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Abstract

Violence among gang members is a well-known and growing concern. It has been exacerbated

by the increasing popularity of social media, as members of rival gangs use the platforms

to interact with and taunt each other. This thesis explores a number of natural language

processing solutions towards this issue, focusing on users involved with gangs in the Chicago

area. We work towards building a classifier that identifies tweets that are at a high likelihood

of precipitating later real-world violence. This is done by integrating qualitative theories

about how these users interact both online and offline with data-driven machine learning

methods. We experiment with both supervised and semi-supervised learning approaches to

solve this task. We also generate justifications of these predictions through explanation of

the features most significant to them.
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CHAPTER 1

Introduction

Gun violence is a major issue in the United States, particularly in urban areas. Chicago saw

a 40% increase in firearm violence in 2015, and these numbers continued to increase during

2016. In December of 2016 (while this study was underway), sixty people were shot and

eleven killed over Christmas weekend in Chicago (Nickeas et al. 2016). Other cities in the

US, such as Atlanta, Baltimore, and Detroit, have similar stories and statistics.

Much of this violence is gang-related, and a number of recent studies show that specifically

gang violence has been worsened by rising usage of social media. Décary-Hétu and Morselli

(2011) performed a qualitative analysis that found that gangs are increasing their presence

on social media. Furthermore, this rise in social media usage has led to activity called

“internet banging,” in which gang members discuss gang affiliations and activities as well as

disseminate violence (Patton, Eschmann, et al. 2013). Due to the visibility of these online

interactions (many gang-involved youths do not have any privacy settings on their social

media accounts), discussions of violence among gang members are becoming much more

public.

The overall aim of this project is therefore to identify discussions of violence in social

media posts and interactions before any actual violence occurs off-line. We currently focus

on data from gang members in Chicago. This decision allows us to focus on the language

and culture specific to Chicago gangs, while still developing tools that can also be applied

to other cities (provided appropriate data from those areas). To our knowledge, no tools

have yet been built to identify threatening language on social media, which makes our work

a new task.

Despite the lack of previous work on this topic, it is an important task. If we are able to

automatically identify the posts that are most likely to lead to violence, we will be able to

provide a new set of tools for intervening before this violence occurs. There are community

outreach programs that already perform these interventions, both on- and off-line, when they

see a problematic post on social media. The process currently used to do this is completely
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manual, which means it is not very scalable. However, the amount of information people

post on social media continues to grow rapidly, making automatic tools to augment manual

monitoring of social media more relevant than ever.

The work in this thesis was conducted in close collaboration with other computer scien-

tists as well as with collaborators in the Columbia School of Social Work’s SAFE Lab. The

Social Work researchers annotated and interpreted the social media data, while the computer

science researchers gathered the (larger) datasets and developed systems that automatically

process and classify the data. The research group also meet for frequent meetings to dis-

cuss the intersection and interactions of our work.1 This collaboration with Social Work

researchers is particularly helpful to the development of NLP tools for this specific task,

because our collaborators provide (or obtain) expert domain knowledge on a topic about

which the data scientists know very little.

The specific contributions of this thesis are as follows:

• We develop a number of fully supervised classifiers that identify expressions of both

aggression and loss in a dataset from one Chicago gang member.

• We expand our fully supervised classifier to a semi-supervised (via self-training) model

that learns from both our set of unlabeled tweets from gang members in Chicago and

from our labeled data.

• We develop of system to generate explanations of individual predictions made by our

classifiers, in order to make these models more accessible to a non-computer scientist

end user.

Each of these contributions works towards automating the process for identifying social

media posts at a high risk of leading to offline violence, either directly or indirectly. Making

the assumption that these high-risk tweets express either loss or aggression (for reasons

outlined in Section 3.2), our two classifiers automatically identify tweets that contain one of

these two topics. Our fully supervised approach was a success; our best models significantly

outperform a baseline when predicting both aggression and loss in tweets from Chicago gang

members. However, our semi-supervised approach was less successful, because it performed

about the same as our fully supervised classifiers (and any improvements over the supervised

model were not significant).

The explanations of these predictions provide a more indirect contribution to this task.

However, they are also important to the overall goal of this project, because they work to

clarify our predictions to the users who do not know how ML models work. Without these

1This group follows a similar model to that presented in Ford (2014).
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clarifications, our desired end user (who would use our system to more effectively monitor

the social media of gang-involved people for high-risk tweets) would have no reason to trust

our model’s predictions.

An additional contribution derived from all three projects undertaken by this thesis is

the application of NLP tools to the language that occurs in social media posts of gang-

related users. This dialect of English (which contains elements from both mainstream social

media language and African-American Vernacular English (AAVE), as well as gang-specific

features) is relatively unstudied in NLP. It is also different enough from Standard English that

standard NLP tools generally do not perform well on our data, requiring us to experiment

with various knowledge bases in order to apply these tools to our data.

Each of the three areas examined by this thesis thus work towards facilitating preventative

intervention in gang-related gun violence, which is the overall goal of this project. We are

able to apply NLP tools to a rather unstudied dialect of English successfully. Models for

predicting tweets that express loss or aggression, which we have hypothesized are the ones

that are at a high-risk of precipitating real-world violence, were also developed. This work

serves to lay the groundwork for a relatively new application of computational social science

and NLP.
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CHAPTER 2

Related Work

2.1 Computational Social Science

Data science tools have often been applied towards investigating questions in social science;

this is also true for the specific question of gang violence in Chicago. Wijeratne et al. (2015)

built a system which analyzed the social media posts of known Chicago gang members. They

used standard emotion analysis tools (that were not tailored to the language of the dataset)

as well as social network analysis in order to examine these social media interactions with

the goal of gaining a better understanding of the structure of these gangs.

Prior research has also studied gang activity outside of Chicago by using similar methods;

Radil et al. (2010) conducted a social network analysis to study the geographic relationships

of gangs in Los Angeles using spatialized network data. Other studies have investigated

automatically identifying gang members on Twitter, both inside and outside of Chicago

(Balasuriya et al. (2016); Wijeratne et al. (2015)). They use text features (from the user’s

tweets and profile descriptions) as well as descriptive tags about users’ profile pictures that

are obtained from a standard image classification tool in order to predict if a user is affiliated

with a gang or not.

Data science tools have also been used to study gun violence more broadly. Green

et al. (2017) used social network analysis in order to model gun violence in Chicago as a

social “contagion”. They find that these social contagion factors play a significant role in

the spread of firearm violence in their dataset. Other researchers have used information

extraction techniques to identify shootings from news articles. These extracted events have

been used to build a database of gun violence incidents across the United States (Pavlick

et al. 2016).
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2.2 Extracting Features from Twitter Data

A fair amount of work has been done on sentiment analysis of Twitter data, and Twitter

has become a popular source of data on which to develop sentiment analysis techniques

(Rosenthal, Nakov, et al. 2015). Rosenthal and McKeown (2013) used the Dictionary of

Affect in Language (or DAL) as we do for emotion recognition on our dataset. They map

the scores obtained from the DAL to a sentiment score instead of using the full set of three

dimensions to model emotion (Whissell 2009). Other approaches to sentiment analysis of

Twitter data experiment with feature based models as well as tree kernel ones (Agarwal

et al. 2011).

Beyond sentiment analysis, other work has been conducted on emotion recognition in

Twitter data. Mohammad and Kiritchenko (2015) used hashtags to automatically label a

Twitter dataset with fine-grained emotion tags. These emotion labels differ from our ap-

proach since there is no similarity metric between the labels. Emotions are instead considered

different, discrete states. With the DAL, we use a set of dimensions that attempt to quantify

the emotion expressed in a tweet, rather than qualitatively describe it. Because of this, our

emotion scoring methods are more similar to the sentiment approaches than the emotion

recognition ones.

There has also been previous work developing POS taggers for Twitter data. Owoputi et

al. (2013) built one such tagger for English tweets that deals with many of the non-Standard

elements of tweets, such as emoticons and acronyms. Others have developed POS taggers for

AAVE (Jørgensen et al. 2016). They used various methods of domain adaptation in order to

learn a AAVE POS tagger from a partially labeled dataset. This is similar to our approach,

as we use domain adaptation so that we can build NLP tools for our data using Standard

English resources.

Other work has performed domain adaptation through feature set augmentation (and

then learning the adaptation with a supervised ML model); this technique informed the

development of the POS tagger trained for our specific dataset (Daumé III 2007). Another

method of domain adaptation is seen in Agarwal et al. (2011). In this work, Internet slang

is mapped to Standard English using online resources map between the two; this is similar

to the methods of “translation” we use for emotion scoring, though existing resources for

the language of our data are harder to come by than for mainstream Internet slang.
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2.3 Semi-Supervised Learning Methods

Much of the work done on distant labeling exploits existing aspects of the data that are

correlated with the labels they want to learn. This is seen most often with sentiment and

emotion recognition; both Go et al. (2009) and Agarwal et al. (2011) use emoticons to au-

tomatically assign sentiment labels to their data.1 Similarly, Purver and Battersby (2012)

used both emoticons and emotion word hashtags (such as #angry or #happy) to automati-

cally assign emotion labels to tweets. The noisy labels in all three studies were then used to

directly train a supervised ML model.

In all of these cases, the features that are used to distantly label the data are manually

chosen using a priori knowledge about the task. Ouyang and McKeown (2015) use a more

complex distant labeling algorithm, in which the method for assigning the labels is learned by

an SVM over a larger set of heuristics. Other researchers have exploited existing knowledge

bases to perform distant labeling on tasks such as relation extraction and semantic parsing

(Mintz et al. (2009); Berant et al. (2013)).

Other approaches to semi-supervised learning involve directly incorporating unlabeled

data into the learning process. One example is co-training, where two different “views” of

the same labeled data L (often meaning different feature sets derived from the same dataset)

are used to train different models. These models are used to verify the other’s predictions

on an unlabeled dataset U and incorporate unlabeled points into L if verified (Blum and

Mitchell 1998). This approach requires two different sets of features that can relatively

accurately model the data for classification.

Self-training is another approach taken towards semi-supervised learning, in which a

model is trained on a small seed dataset L and then used to label the larger unlabeled dataset

U before retraining on both L and the automatically labeled U . Zhou et al. (2012) use a

variant of self-training where only the unlabeled data points that improve the performance

of the classifier are automatically labeled and added to the training data. Other researchers

have performed self-training with unlabeled data in conjunction with distant labeling (such

that they verify each other), similar to our approach (Ouyang and McKeown 2015).

2.4 Explanations of ML Models

Prior studies have experimented with a number of different methods of generating explana-

tions or justifications of a classifier’s predictions. Some have focused on explaining predictions

1Emoticons are facial expressions depicted by punctuation. In these studies, a tweet containing emoticon
:) would be assigned a positive sentiment label
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through visualization of features and how important they were to the prediction (Kononenko

et al. (2010); Baehrens et al. (2010)). However, these visualizations rely on knowledge of how

the underlying models work and so are not helpful when trying to clarify how a prediction

was made to a user who is not a computer scientist.

Other researchers have worked on making ML models more understandable to human

users by mapping from the probabilistic representation of these models to qualitative phrases

(such as “likely” or “very unlikely” to represent different p-values) about how confident the

model was about the prediction (Druzdzel 1996). This work generated basic text expla-

nations that used these qualitative phrases to describe the prediction process. Biran and

McKeown (2014) developed a system to justify a model’s predictions to a non-computer

scientist user; these text justifications were automatically generated using NLG tools. Here,

the goal was to convince the user to trust the model, rather than just explain the prediction

process.

Ribeiro et al. (2016) take a different approach to explaining their classifier’s predictions

for image classification: their system highlights the sections of the image that contribute

most to the prediction. This is similar to our approach of highlighting the features that have

the largest effect on a prediction. They also propose using their explanations to help users

determine if a model is trustworthy or not, rather than to just build trust in their system.

Since their explanations consist of fragments of the input image, it is easy for users who

are not familiar with ML models to still judge if the model selected the correct areas of the

image on which to base its prediction.
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CHAPTER 3

Premises

This chapter details background information about our work on predicting violence in gang-

related social media. We provide the specifics of the different datasets used in each of

our tasks. Then we focus on the Social Work theories and techniques that motivate this

project. All of the work in this thesis was conducted with close interaction and collaborative

meetings with researchers in Social Work. Our data and a number of the choices we made

while designing our experiments are therefore informed by these theories.

3.1 Data

This work involved a number of different but interrelated datasets. Details of the various

datasets are given in Table 3.1. All of our data was obtained and annotated by our collab-

orators at Fairfield University and in the Columbia School of Social Work. The annotated

data was labeled with codes that described the content or intent of each tweet. For the

computational experiments, these codes were collapsed into more general themes of “loss”,

“aggression”, and “other”, or tweets that do not fit into either of the first two themes. These

themes are used as labels for our learning tasks.

Our labeled dataset consists of 820 tweets; these are mostly from Gakirah Barnes, a gang

member who was shot and killed in April 2014 at the age of 17. It also contains a smaller

number of posts from users with whom she communicated.1 This is the dataset used for the

fully-supervised classification task described in Chapter 4; it was also used in Chapter 5.

Our collaborators initially choose to focus on Gakirah due to her active presence on Twitter

as well as her known affiliation with a Chicago gang. Due to her frequent posts, all of the

tweets come from three months in 2014: January, March, and April. This data was labeled

by two Social Work graduate students; the inter-annotator agreement on the portion of the

data used for evaluation is κ=0.62, indicating moderate agreement.

1This data can be found online at http://dx.doi.org/10.7916/D84F1R07.
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Dataset Number of Tweets Date Range Annotated?

Gakirah 820 Jan. 2014, Mar.-Apr. 2014 yes
Top-Ten Comm. 47 Feb.-Apr. 2014 yes
Gang Network 1.6 million Mar. 2010-Jul. 2016 no

Table 3.1: Summary of the datasets

We also worked with tweets from Gakirah’s “top-ten communicators”, who are the ten

users on Twitter with whom she communicated the most. These are determined by quantity

of at-mention conversations, which are conversations where person A replies to a tweet from

person B by including “@person A’s username” in the response tweet. This data comes from

the same time period as the Gakirah dataset. A portion of these tweets were labeled (with the

same codes as the Gakriah dataset); only the labeled data from the top-ten communicators

is detailed in Table 3.1. These labeled tweets from “top-ten communicators” were used for

evaluation of the semisupervised learning task (5).

Finally, we continue to use Gakirah’s network to gather a large, currently unlabeled

dataset of tweets. Specifically, users whose tweets are included in this dataset are chosen

by expanding on the “top-ten communicator” users and other people in Gakirah’s network.

Once these people are found, their 200 most recent tweets are added to the dataset. This

process gave us a dataset of 1.6 million tweets. It covers a much longer time period than

our other datasets, with tweets that date from March 2010 to July 2016. However, since the

most recent tweets for each user are collected, the distribution of dates is skewed, so that

there are many more recent tweets than earlier ones.

It is important to note that the tweets in our dataset contain language that differs

both from Standard American English and from the mainstream “social media” language

commonly used on Twitter. Rather, the language of our data contains aspects of African-

American Vernacular English (AAVE) as well as subculture specific abbreviations, spelling,

and vocabulary. Tweets from our data are provided in Figure 3.1 as examples of this dialect.

This specific language is not yet studied in NLP, and deviates greatly from the Standard

English used to develop most NLP tools. This complicates the tasks of text processing and

understanding utilized in this work.

3.2 Social Work Theories

This work was conducted as part of a collaboration with researchers at the Columbia School

of Social Work. All of the manually labeled data used to train and evaluate our systems were

annotated by these collaborators, using the methods described below. Additionally, much
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Figure 3.1: Example tweets demonstrating the language of the data (and their associated
label).

of our computational research was motivated and informed by the following theories in the

field of Social Work.

The first step of the qualitative analysis of the data was to hire domain experts to explain

the context needed to understand the data. For this study, our collaborators hired people

from the Chicago neighborhoods on which this project focuses. These youths “translated”,

or explained, the tweets from Gakirah. These explanations included their reactions, the

perceived message of the tweet, and an explanation of the language and context needed to

understand the tweet (Patton, McKeown, et al. 2016).This information was not directly used

to label the data for computational work. However, it provided specific domain knowledge

to our collaborators with respect to the culture and language of the tweets, and therefore

informed their annotation process.

The social work researchers then used a process called the Digital Urban Violence Analysis

Approach (DUVAA) to annotate the data (Patton, McKeown, et al. 2016). The DUVAA

is a systematic qualitative approach that proceeds by: discovering any offline “precipitating

events” that could cause a threat or aggressive conversation on social media; identifying the

user handle of the author of the tweet in question; analyzing the body of the tweet for the

message, tone, and gang-related references. The content of the tweet and the surrounding

context (such as retweets or replies) are also evaluated for evidence as to why this tweet

might precipitate violence and for the tone of the tweet. Finally, the researchers identified if

a given tweet is a “trigger event”, which is a point where the overall tone of a conversation

or a user’s posts goes from neutral or positive to aggressive.

This technique was used to gain a rich, qualitative understanding of the data. The

dataset was then annotated using all of the research of the tweets from the DUVAA and
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the domain knowledge from the hired experts. The specific, fine-grained codes came from

a codebook developed during this process; they were later collapsed into general themes for

the computational work (Patton, McKeown, et al. 2016).

Outside of data annotation, our work is also influenced by previous work done by our

collaborators. Specifically, an existing theory on displays of aggression argues that threaten-

ing posts often follow posts expressing grief in a cycle of reactionary violence (Patton, Lane,

et al. 2016). This theory was further substantiated by the DUVAA process while annotating

Gakirah’s tweets (Blevins et al. 2016). We designed our system with this theory in mind, by

focusing on identifying expressions of grief and loss as well as on predicting aggression.
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CHAPTER 4

Supervised Learning: A Case Study

Much of this work is focused on identifying the tweets at a higher risk of leading to violence.

Our first experiment was a supervised approach to this task. Specifically, we trained fully

supervised classification models to identify which tweets from this dataset express loss or ex-

press aggression. We focus on these two categories, loss and aggression, due to the theorized

cycle of grief leading to violence discussed in the previous chapter (3.2). We hypothesized

that, if we can identify the tweets that express loss and aggressive intent from the user, we

can use this cycle to better understand when online aggression turns into offline violence.

With this in mind, we developed a number of different classifiers in order to predict

the labels of “loss”, “aggression”, and “other”. These were trained and evaluated on the

Gakirah dataset that was introduced in 3.1. Because of the limitations of this dataset, we

focus on building a case study for a single individual’s language and content, and work

towards providing a framework future work can build off of.

We noticed that our labels of “aggression” and “loss” are related to both the content and

the tone of the tweets; this realization informed the features chosen to train our system. We

used a number of language features to model the content. Also included as features for the

models are the predicted emotion scores of this data.

The rest of this chapter proceeds as follows. First, the process of obtaining emotion scores

for the tweets in our dataset is explained. We then cover the features used to train these

models and how we find these features for each tweet, before walking through the design of

each of the models for this experiment. The evaluation of how our systems perform on a

held-out test set are then presented. Finally, we discuss these results and how it relates to

future work towards predicting and preventing incidents of gang violence. This work was

originally discussed in Blevins et al. (2016) and is expanded upon here.
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4.1 Emotion Scoring

We use an emotion recognition process for the tweets in our dataset as part of our system

for predicting aggression and loss. Our process for obtaining the emotion of a given tweet

is based on the Dictionary of Affect in Language (or DAL) (Whissell 2009). The DAL gives

scores for individual words, which we then combine to generate a tweet level score. Due

to the language differences of the tweets from Standard English (which the DAL is created

from), we use a number of adaptation techniques in order for this resource to work with our

specific data set.

The DAL is a lexicon that maps English words to a three dimensional score. The three

dimensions of this score are as follows: pleasantness, which is how positive the word (or

connotation) is; activation, which is a measure of a word’s intensity; and imagery, or how easy

a word is to visualize. The DAL contains approximately 8,700 words, which (while sizable)

does not cover all of Standard English. Our system augments the DAL with WordNet in

order to get emotion scores for Standard English words that are not handled by the DAL,

following the work done in Rosenthal and McKeown (2013). For each word that is not in the

DAL but is in WordNet, the synonyms from the first (most common) synset of that word

are searched against the DAL.1 It is assumed that the emotion of a synonym will be similar

to that of the original word. Therefore, if there is a match between the synonyms and the

DAL, the emotion score of the synonym is used for the original word.

While this extension to the DAL helps with coverage of Standard English, the language

found in our dataset is a different dialect of English. Another part of building an emotion

recognition system for this data is therefore to find an adaptation that applies the DAL

to the language of the tweets. First, we make the assumption that any word not found

in the DAL or in WordNet is not a word in Standard English; we then try to map these

non-standard words to a similar word or phrase in Standard English.We experimented with

both Wiktionary, which is a large open-source dictionary from Wikipedia, and a phrasebook

learned from our dataset to “translate” these tokens to standard English.2 With Wiktionary,

the definition of a word was considered to be its translation. The coverage and accuracy

of these two resources are compared in Table 4.1. The accuracies for these lexicons were

calculated based on a manual evaluation. It assessed translations for terms from tweets in

the development set. Since the phrasebook has a coverage comparable to Wikipedia over

1We do not use any form of word-sense disambiguation (WSD) to choose the best synset for the specific
context; adding WSD to this process could tested in future work on emotion recognition through this process.

2This phrasebook was automatically generated with a machine translation (MT) system by another
member of our team, Robert Kwiatkowski. Details on how this system worked can be found in Blevins et al.
(2016).
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Resource Coverage Accuracy

Wiktionary 47.7% 45.1%
Phrasebook 43.6% 83.2%

Table 4.1: Comparision of two lexicons on
the task of mapping from nonstandard En-
glish of our dataset to Standard English. Figure 4.1: The most common emojis in our

dataset and their unabbreviated descriptions.

the non-standard tokens, and a much higher accuracy, we use the phrasebook for mapping

to Standard English in the final system.

Many of the tweets in the dataset contain emojis in addition to the other language

features described. Emojis are Unicode symbols that are popular for online communication,

and they function similarly to the older “emoticon”, which is a facial expression depicted

by punctuation. Emojis add to the emotion of the tweets they appear in and are frequent

in our dataset; 12.6% of non-stopword tokens in our data are emojis. Since emojis clearly

contribute the overall emotional content of a tweet, we looked for ways to automatically

ascertain a DAL-style emotion score of individual emojis, as this would allow them to act

like any other token in the tweet when getting the final emotion score of the tweet.

In order to achieve this, we use a technique similar to the one for translation of non-

standard tokens. We use a lexicon that maps each emoji to a representative English word

or phrase. Our Emoji Lexicon uses abbreviated versions of the “names”, or descriptions

given by the Unicode Consortium, as the definition of its respective emoji. Examples of

these descriptions for the five most common emojis in our dataset are shown in Figure 4.1

(Blevins et al. 2016). We use this lexicon to obtain a “translation” of each emoji analogously

to how non-standard words are handled.

The techniques described above were combined together into a emotion scoring system

that scored each tweet in the following manner. First, the tweet was preprocessed in order

to remove any stopwords or other tokens that do not contribute to the emotional meaning

of the tweet; these included tokens such URLs and Twitter handles. For each nonstandard

token found in the tweet, we search a translation lexicon (made up of the MT-generated

phrasebook and the Emoji Lexicon) to obtain a Standard English translation. When a

translation is found for the token, it is given to the DAL system described above to obtain

an emotion score; any words in the DAL or Wordnet skip the translation step and are given

directly to the DAL system.

Once the emotion scores for all tokens in the tweet are obtained, the scores are combined
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to represent the overall emotion of the tweet. We tested a number of different methods

for combining the individual scores into a tweet-level representation. One method was to

average the dimensions over all words in the tweet to obtain an “average pleasantness score”,

“average activation score”, and “average imagery score” for each tweet. A second method we

looked at was to get a score across the three dimensions for each tweet based on the deviation

from the average value of that dimension: for a given dimension d and tweet T of length n,

scored(T ) = 1
n

∑
t∈T

(scored(t)−µd). Finally, we tried using the minimum and maximum scores

across all tokens in the tweet, which gave six scores (a min and max for each dimension) per

tweet. We found that the best results were obtained during the development process with

the min/max scores.

4.2 Feature Selection

We trained our models using a number of features computed from the tweets in the dataset.

Standard features that were used include unigrams and bigrams; for these n-grams, emojis

are treated as regular tokens. This means that a single emoji is a unigram, and behaves

analogously in bigrams extracted from the data. (However, the emojis are treated differently

when extracting emotion scores, as described below.) Additionally, for unigram features,

Twitter handles are mapped to a common token, and URLs are handled in the same manner.

Another feature we used to train this model is predicted POS tags. For part-of-speech

tags, we experiments with both POS unigrams and bigrams. Like other NLP tasks discussed,

the language of the dataset complicated the task of POS tagging. Therefore, the predicted

tags were obtained from a POS tagger trained specifically for the domain of our dataset; this

tagger was developed by another member of our team, Robert Kwiatkowski.

This was accomplished by performing domain adaptation on the CMU Oct27 dataset.

The POS tagger was then trained on the adapted CMU data and our data, which was

manually annotated in order to train the tagger (Owoputi et al. 2013). For these tags,

emojis are again treated as regular tokens, that correspond to ‘E’ (the emoticon tag for

the CMU Twitter tagger that we expanded to also cover emojis). This POS tagger had an

accuracy of of 89.8% on our development set and 81.5% on the test set. This meant that it

significantly outperformed both the CMU Twokenizer and the Stanford POS tagger for this

specific data (p < 0.0001) (Owoputi et al. (2013); Toutanova et al. (2003)). More details on

this process are given in Blevins et al. (2016).

We also provide the emotion scores computed for each tweets as features to the classifier.

We found the score for each tweet by using, for each dimension (pleasantness, activation,

and imagery), the minimum and maximum scores found across all tokens in that tweet. The
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process by which we obtain these scores and chose how to combine them into a tweet-level

representation of emotion is detailed in the previous section.

4.3 System Design and Development

We experiment with a number of supervised classification systems to predict which tweets

are aggressive or demonstrate loss. All of our systems are built from Support Vector Ma-

chines (SVM), as we found that they performed best on this dataset (Cortese and Vapnik

1995). A number are unmodified SVMs that perform binary classification; these are ternary

classification on the full dataset (TCF) and binary classification on the aggression-loss subset

(BCS). With the TCF classifiers we predict aggression versus the rest of the dataset, loss

versus the rest of the dataset, and a combined label that looks for loss or aggression tweets

out of the full dataset. For the BCS classifiers, we create a subset of the data by selecting

all the tweets in our Gakirah dataset that contain tweets manually labeled as “aggression”

or “loss”. We then train our BCS classifiers on this subset.

We also implemented an additional model, which we call a “cascading classifier” (CC).

It uses two SVM models. One model is trained to find all aggression and loss tweets, and

is the same model as the aggression+loss task for the TCF. This automatically generates a

aggression/loss subset; then, the relevant label (loss or aggression, depending on the task) is

chosen from the subset by a second SVM model. These second models are identical to the

BCS on loss and aggression.

There were a number of motivations for designing the cascading classifier. In our pre-

liminary work, we found that we achieved markedly better results when we worked with the

subset of data that contained only loss or aggression tweets. However, this subset is not a

realistic dataset; any data gathered from the real world will undoubtedly contain miscella-

neous tweets that are not related to grief or aggression. We therefore built the CC in an

attempt to recreate this subset with a realistic dataset.

During the development process, we also choose which subset of the potential features

to include in the final model presented for evaluation. All of the feature types (ngrams,

POS tags, and emotion scores) are helpful for the final models. Table 4.2 shows the results

of an ablation study on the development set for our final models; the last row for each

experiment/label pair lists the full feature set used in evaluation (Blevins et al. 2016). Here

we only show results for the features that improve performance (by themselves) over the

unigram baseline.

This study found a number of interesting associations between features and tasks. Bi-

grams were found to be helpful for predicting aggression (including the task of predicting if
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Experiment Label Features F-measure

TCF Aggression unigrams (baseline) 0.609
unigrams, bigrams 0.674
unigrams, POS-unigrams 0.674
unigrams, emotion score 0.659
unigrams, bigrams, POS-unigrams, emotion score 0.741

TCF Loss unigrams (baseline) 0.756
unigrams, POS-bigrams 0.818

TCF Aggression + Loss unigrams (baseline) 0.727
unigrams, bigrams 0.738
unigrams, POS-bigrams 0.812
unigrams, bigrams, POS-bigrams 0.821

BCS Aggression unigrams (baseline) 0.866
unigrams, bigrams 0.884
unigrams, emotion score 0.914
unigrams, bigrams, emotion score 0.926

BCS Loss unigrams (baseline) 0.708
unigrams, POS-unigrams 0.766
unigrams, emotion score 0.723
unigrams, POS-unigrams, emotion score 0.800

Table 4.2: A breakdown of the impact of the feature sets for each experiment. The first
line given for each experiment and label is the unigram baseline, and the last line is the full
feature set.

a tweet demonstrated aggression or loss in the full dataset). POS tags (either using unigram

or bigram representations) were useful for most experiments, but they did not help with

classifying aggression on the aggression/loss subset data. Emotion scores were useful for

most experiments as well; the only exceptions were cases of predicting loss (including the

task of predicting both loss and aggression) on the full dataset.

4.4 Evaluation

The results of these experiments on an held-out test set are shown in Table 4.3 (Blevins et al.

2016). All experiment abbreviations are defined in the previous section, and the averages

listed for the TCF and CC classifiers are macro-averages over the listed labels. Overall, our

models showed better recall performance than precision. The BCS classifiers performed much

better than the other models; however, they are trained on an artificially constructed dataset.

We therefore tried to recreate this performance on a real-world dataset using the cascading

classifiers. This attempt was rather successful; the improvement the CCs gained over the
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Experiment Label Precision Recall F-measure

TCF Aggression 0.525 0.600 0.560
Baseline (unigrams) 0.462 0.514 0.486

TCF Loss 0.500 0.625 0.556
Baseline (unigrams) 0.500 0.688 0.578

TCF Average of Aggression and Loss 0.513 0.613 0.558
TCF Aggression or Loss 0.588 0.800 0.678
CC Aggression 0.471 0.923 0.623
CC Loss 0.483 0.933 0.636
CC Average of Aggression and Loss 0.477 0.928 0.630

BCS Aggression 0.868 0.943 0.904
Baseline (unigrams) 0.906 0.829 0.866

BCS Loss 0.750 0.938 0.833
Baseline (unigrams) 0.813 0.813 0.813

Table 4.3: Experimental Results on the test set.

TCFs was statistically significant (using randomization), with p = 0.023 for aggression and

p = 0.039 for loss.

4.5 Discussion

Our system works on the novel task of predicting which tweets (and social media interactions

in general) are likely to escalate to violence. It is a case study, focusing on the language

of one person, that is a stepping stone towards future work in this area. Our focus on one

user’s data is thus beneficial, because it allows us to make the most of our limited dataset

by focusing on the specific language of one person and build a coherent system that acts as

a prototype.

One of the contributions this study makes is addressing the issue to using common NLP

techniques on a non-standard, low-resource dialect of English. We find that the language of

our data has enough similarities to Standard English (and the recently studied “social media

language”) that we can use a number of existing NLP datasets, namely the Dictionary

of Affect in Language (DAL) and CMU Twitter Corpus for POS tagging, as long as we

incorporate some adaptation techniques. These account for the ways in which the language

of our data varies from Standard English and give us much better performance over use of

standard NLP tools.

The high recall of our models is also important. The end goal of our work on this topic

is to design a system that can help with the work already being done by non-profits such as

CureViolence (Chapter 1). Specifically, we would like to enhance their work by narrowing
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down the amount of data a person needs to look at by highlighting the most high-risk posts on

social media. However, this is a high-stakes task and we don’t want to miss any threatening

tweets; the user can judge if a post is truly threatening or not. Thus, our system has a high

recall that catches almost all of the relevant tweets in order to better enhance the existing

work done by nonprofits.

Future work on the task of threat classification on social media will be to generalize this

model with a larger, more varied dataset. The goals with a more robust dataset would be to

scale this system to work on a real world dataset while also improving its accuracy. There

has also been recent success in other studies with the use of character ngrams for document

classification, especially with smaller dataset.3 Due to the amount of data considered here,

one possible improvement on the feature set could be a character ngram language model,

which may be less sparse than the token-level one considered for our classifiers.

3For example, in Weissenbacher et al. (2016), the character ngrams were found to be the most informative
feature for their classifier by an ablation study.
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CHAPTER 5

Semi-supervised Learning

This section discusses a semi-supervised learning approach to identifying tweets that express

aggression. One of the major issues with a fully supervised approach to our task is that it

does not take advantage of the large amount of unlabeled data we have available to us. One

way we could integrate this data into our supervised model (chapter 4) would be to label this

data. However, it is generally very expensive and time-consuming to label all or a significant

portion of such a large dataset; the process our collaborators use for annotation (described

in 3.2) is no exception.

Since it is not feasible to label all or most of the 1.6 million tweets in the Gang network

dataset (described in Section 3.1) by hand, we altered our classification approach instead.

We do this by building a semi-supervised system that can use both the labeled and unla-

beled datasets to train a classification model. Our final semi-supervised system first uses a

distant labeling algorithm to automatically label the unannotated dataset. The system then

iteratively retrains a classifier using both the manually labeled and distantly labeled data,

until a halting condition is met. In the next section, we discuss this process and alternate

designs we considered while building the system.

By modifying our supervised classifier to a semi-supervised one, we hope to improve our

performance on this task by learning additional information from our unlabeled dataset.

We tested this hypothesis on a small test set and present the results in Section 5.2. The

evaluation shows that we are only moderately successful on improving on the fully supervised

baseline. However, some of the results indicate that this approach has potential with some

minor changes with respect to the datasets used to train our models. We therefore conclude

with a discussion of both the results and the system itself, considering how this experiment

can be improved upon in future work.
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Figure 5.1: Flowchart of the semi-supervised system

5.1 System Design

The overall goal of our semi-supervised model is this: to train a supervised learning model

using both our small set of labeled data and the much larger set of unlabeled data. We achieve

this by using a self-training paradigm similar to that found in Ouyang and McKeown (2015).

The overall flow of how our system does this is shown in Figure 5.1. This system considers

two datasets: the manually labeled Gakriah dataset (also referred to as the “seed dataset”)

and the unlabeled Gank Network dataset. The unlabeled data is first distantly labeled by

an algorithm described below, and then repeatedly passed to a (retrained) classifier to verify

these distant labels. If the distant label is verified by the classifier, it is added to the verified

dataset (initially composed of only manually labeled tweets), and the classifier is retrained

on the verified dataset. This process continues until the halting condition is met.

Thus, the first step in designing this system was to develop a robust distant labeling

algorithm. We initialize this process by discovering a set of tokens, or “indicators”, that

are strongly associated with each class. This is a generalization of the distant labeling

concept seen in Go et al. (2009) and Agarwal et al. (2011): in those papers, specific tokens

(i.e., emoticons) were manually selected and associated with labels, whereas we choose our

indicators automatically. These indicators are determined calculating the tf-idf score of the

tokens in our seed dataset with respect to each class. We consider the same classes from

the supervised learning task. This means that for a given token t, we have three scores:

tf-idfaggression(t), tf-idfloss(t), and tf-idfother(t). For each class c, we select the top k tokens

based on their tf-idfc scores and consider them to be “indicators” of class c.1 If an indicator

is in the top k for two or more classes, it is removed from all the classes it occurs in; this

1The number of indicators k for a given class is experimented with, and the results for a range of k values
are presented in Section (5.2).
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ensures that each indicator only indicates one class.

We assign the distant labels of “aggression”, “loss”, and “other” to each tweets in the

unlabeled dataset based the occurrence of these “’indicators” in the tweet. A tweet is

distantly assigned to a class c if it contains at least one indicator of c, and if it has more

c indicators than indicators of any other class. Once a class is determined for a tweet, all

indicators of that class are removed before being evaluated by or used to train a classifier.

For example, if the distant labeling algorithm sees the tweet “Free my gang rip my gang

I love my gang ” and considers the token “ ” to be an indicator of loss, then it

will assign the distant label of “loss” to that tweet and remove “ ” from the original text.

Removing these indicators is important, since we don’t want the model to learn any biases

we could introduce by heuristically labeling the data. If a tweet doesn’t contain an indicator

for any of the classes considered, it is removed from the dataset.

Once we have a tentative labeling for the Gang Network dataset from the distant labeling

algorithm, we can use them to update our classifier. However, we do not use the unverified

tf-idf labels to train the model. (If this approach was successful, we could simply label

the entire dataset with the distant labeling algorithm and skip the ML models.) Instead,

we iteratively train a classifier based on the distantly labeled data. On each iteration, an

SVM model is trained by our “verified” dataset, which initially contains only the manually

labeled tweets. We then predict labels for the “unverified”, or distantly labeled, tweets. If

the prediction from the SVM matches the assigned distant label for a tweet, that tweet is

added to the “verified” dataset. However, if the predicted label and the distantly assigned

label don’t match, the tweet is put back into the “unverified” set.

This process iterates until a halting condition is met. We experimented with a number

of potential conditions while designing this system. These included: stopping after a specific

number of iterations, stopping when there was no update to the verified dataset, and stopping

if less than a specific number of tweets were added to the verified set (a generalization of

the previously stated condition). The final system uses a combination of these as its halting

condition: it stops iterating if the verified dataset is not updated or if a maximum number

of iterations is reached.

5.1.1 Alternative Designs

We considered a number of different techniques for incorporating our unlabeled data into a

semi-supervised learning model. Specifically, we tested a number of different distant labeling

algorithms in order to automatically label the unlabeled data. The method described in the

previous section was selected after experimenting with these options, which are discussed
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here.

Both of the other options considered were nearest centroid clustering algorithms; they

assigned a label to the tweets of the unlabeled dataset based on the clusters they are assigned

to. The first clustering approach we tried was to cluster the labeled and unlabeled datasets

together. Then the distant label of the unlabeled tweets in each cluster were then assigned

by taking a majority vote over the labeled tweets that were located that cluster.

The next approach we tried to assign distant labels was to cluster only the labeled data

together. Our goal here was to get (one or more) centroid representations of each label

by clustering the data semantically. Then, for each unlabeled tweet, we found the nearest

centroid and assigned the label of that centroid (based on the majority of tweets occurring

in that cluster) to the unlabeled tweet. If the tweet was further than a threshold distance

from any of the clusters, it was discarded from the considered data.

5.2 Evaluation

Evaluation is performed by training a SVM model on the verified dataset obtained from the

self-training system, varying over a range of k values during the self-training process. We

use the fully supervised model from Chapter 4 as a baseline for comparison. We evaluated

on a different test set from the supervised experiment; we instead used a collection of tweets

written by Gakirah’s top-ten communicators.

We use a different test set from the supervised model experiment because the original

Gakirah test set was notably more similar to the manually labeled data than the unlabeled

data. Since we want to see if our model can learn to predict aggression and loss in general

(instead of just on Gakirah’s data), we choose a test set that was not drawn from Gakirah’s

tweets.2 This means that the test set is not biased towards any of the models we evaluated.

Since we have such a small test set (47 tweets), we do not reserve any tweets for tuning,

and kept the settings that were found to be best for supervised classification task for this

evaluation. This favors the baselines and strengthens the case for instances where the semi-

supervised model outperforms the baseline. We instead perform this primary evaluation and

discuss methods of improving the datasets and process in the final section of the chapter.

We observe mixed results of this model on the test set when compared against the super-

vised model; the full results can be seen in Table 5.1. For the classification of the “loss” label

and on classifying tweets as “loss” or “aggression”, the fully supervised model outperforms

any of the semi-supervised models. However, when predicting aggression, the semi-supervised

2The test set is also not drawn from the unlabeled dataset but from a totally different source: Gakirah’s
top-ten communicators.
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Label
Number of Indicators k

Fully Supervised 1 2 3 4 5 6 7

Aggression 0.647 0.6 0.69 0.692 0.692 0.615 0.66 0.66
Loss 0.839 0.813 0.824 0.824 0.788 0.83 0.813 0.8

Loss+Aggression 0.918 0.862 0.862 0.862 0.857 0.833 0.852 0.833

Table 5.1: Semi-supervised evaluation results over a range of number of indicators k, com-
pared to the supervised model baseline.

model outperformed the supervised baseline with five of the considered k settings; the mod-

els with k=4 and k=5 beat the baseline by 0.045 points. Overall, the f-scores for aggression

are much lower than for the other two classification tasks; this could indicate that semi-

supervised models improve performance on tasks where the fully supervised model performs

poorly.

5.3 Discussion

There are a number of potential explanations for why the model only outperformed the

supervised model on one class. One possibility is that the manually labeled data came from

a different source than the unlabeled data. The manually labeled data differed from the

unlabeled data both with respect to the users who wrote the tweets and the time frame

represented in the data. In a similar vein, another data concern for this task is that the

manually labeled data comes from a single individual. While this was good for developing

the supervised classifier on a small dataset, it is hard to generalize from such a specific

dataset.

One approach to try in future work in order to address both of these concerns is to

manually annotate a random subset of the unlabeled data and use it as the initial verified

dataset, instead of using an unrelated set. Using a subset of the larger unlabeled set of

tweets would both diversify the “seed” dataset for the semi-supervised algorithm and make

the “seed” dataset more similar to the unlabeled tweets we are trying to learn from. This

would hopefully make it easier for the semi-supervised model to learn from the unlabeled

data and make our model more accurate.

Another potential problem with our system is that we remove the indicators from the

unlabeled tweets when assigning a distant label to them. This is necessary in order not to

introduce bias into our model, but it also means the distantly labeled data are no longer

natually occuring tweets. Rather, they are missing certain elements that may have been

important to understanding if a given tweet was expressing loss, or aggression, or something
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else entirely. This is especially true since these indicators are closely correlated with their

respective labels. This issue is therefore another to consider when attempting to improve

this model in the future.

Semi-supervised learning systems such as this one are important to develop, because they

are a potential solution for solving growing range of tasks (including the one addressed in

this work) inexpensively. Getting large datasets is becoming easier with the quickly growing

quantities of data on the Internet. However, it remains expensive and time-consuming to

manually label data, even though large quantities of labeled data are often necessary to build

a robust ML classifier. This is especially true for new tasks, which do not have data from

past experiments to build upon. A system that can successfully learn from only partially

labeled data would benefit our immediate goal of predicting tweets at a high risk of leading

to violence as well as a broad range ML applications.
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CHAPTER 6

Prediction Explanations

We implemented an explanation system that automatically generates a text that details

why our classifier made a specific prediction. These explanations were designed with a user

who is not computer scientist (and so, does not have an in depth understanding of how our

classification system works) in mind. Because of this target user, the explanations focus less

on the mechanics underlying the classification process, and more on the key features of the

tweets that were important to the classifier for the prediction. Therefore, our explanations

are designed to highlight the specific features from each tweet that were important to the

prediction, in order to show the user what about a tweet indicated to the classifier to classify

it a certain way.

In the next section, we discuss the design of our generation system. This system selects

features important to the classifier for a specific prediction and then uses standard natural

language generation techniques to create a text explanation of them. We then present the

preliminary results of this explanation system. We also consider the importance of these

explanations to the overall goal of our project, and consider ways in which these explanations

could be helpful to users of our classification system.

6.1 Generation System Design

We present the design of our system to generate explanations for predictions over the “aggres-

sion” and “loss” classes on our dataset. This system was designed specifically for justifying

predictions on this task to non-computer scientist users. Because of this, we abstract away

specifics about the classification process (such as the weights for features in the trained SVM

model) and instead focus on intuitively presenting the reasons the classifier made its predic-

tion. The overall design of this system is based on standard NLG techniques and specifically

work on justifying the predictions of ML classifiers by using these techniques (Reiter and

Dale (1997); Biran and McKeown (2014)).
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When presented with a tweet and corresponding prediction, the justifier first selects the

content to be included in the explanation. Specifically, it determines which features from

the tweet had the largest effect on the classifier’s decision as well as the features that acted

as strong evidence against the prediction. Since our classifier is a linear SVM model, the

features we want to include in the explanation can be determined with the feature weight

vector from the SVM and the value of the feature in the tweet.1 The current settings for the

system choose the three most important features for the prediction as well as the strongest

counterevidence feature to be included in the justification (though the number of features

included as evidence for a prediction could be experimented with to develop the most useful

explanations). We provide features the both support and contradict the prediction, so that

the user has a better understanding of the classification process for that tweet, and can see

to most likely reasons the classifier would misclassify a tweet.

We also provide context for the features that are derived from the tweet during classi-

fication (as opposed to the the n-gram features that are occur directly in the tweet) in our

explanations. This means we provide context for the POS unigrams, POS bigrams, and

emotion scores that are highlighted by an explanation. This context maps a derived feature

back to the token or set of tokens that feature is derived from, so that the user understands

how these derived features were arrived at by the classifier from the original tweet. For

example, the second example in Figure 6.1 contains a list of tokens from which we get the

POS tag “verb”. This aspect of our explanation thus demonstrates how the classifier gets

the derived features from the original tweet.

Furthermore, we highlight the selected features that are particularly strong evidence for

a certain class. While we do not present the user with the specific weights or feature values,

we do emphasize if a feature deemed as strong evidence or counterevidence for a specific

class across tweets. We consider this to be an important fact to convey to the user when

justifying a prediction, since a feature that is highly weighted for a class is better evidence

of a prediction than one that is not nearly as highly weighted, even if it is still the best

evidence in the case of a particular tweet. Thus, our system includes a note that a feature is

a particularly strong piece of evidence if it is in the top weighted group of features for that

class. (This is currently with a weight cutoff of 0.5, but this should be determined empirically

based on the model it is generating explanations for.) The information chosen in the content

selection process (the selected features, associated context if relevant, and whether a feature

is particularly strong evidence for a class) are then associated with sentence templates to

1The specific value that a feature has in the tweet depends on its type. Unigrams or bigrams from the
tweet have a value equivalent to their occurrence frequency in the tweet; the emotion features’ values are
the numerical score for that dimension of the emotion score.
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create “messages”. Each message contains a reference to a specific sentence template and a

set of features to populate that template.

Once the content to include in the explanation is chosen, the system then arranges the

messages into the desired ordering for the explanation. The messages are sorted such that

the evidence supporting a particular prediction is first, followed (in a separate paragraph)

by any counterevidence against the prediction. Within these two paragraphs, we group

messages that reference the same entities. For example, if we have message #1 that says a

specific feature f supports the predictions and a message #2 with supporting context about

f , the discourse ordering step orders these messages to make sure message #1 appears right

before message #2. The messages that indicate a feature is strong evidence for a specific

class (based on its feature weight in the SVM) are dealt with analogously.

Finally, we render the ordered messages into a natural language explanation. Each of the

entities (pieces of information chosen in the content selection step) are inserted into their

respective template. The system then performs preprocessing on each of these new sentences

in order to ensure the grammar and sentence structure is correct. Additional information

(such as the prediction decision) are put into text and added to the explanation, which is

then shown to the user.

6.2 Discussion

Figure 6.1 shows example output from the generation system. We present two examples:

one for a correctly classified tweet (the top example) and another for an incorrectly classified

tweet. Each message contains the tweet that is being labeled by the classifier, the classifier’s

prediction, and the generated explanation of this prediction. Since this was built with a user

who is not a computer scientist in mind, we abstract out the details of classification, with

the goal of focusing on specific aspects of the tweet that the user can verify as good evidence

(or not) of the predicted class.

Most modern natural language generation (NLG) tasks are done using ML techniques.

However, there are currently no applicable datasets of model prediction explanations that

we could use to develop a ML model; this is especially true for the specific task, predicting

expressions of violence in social media data, with which our classifier deals. We instead

use a manual approach to designing the system that generates these explanations. This

means that we determine the parameters of the generation algorithm, such as the number of

features included, by hand rather than with a data-driven approach. One potential avenue

of research on explaining predictions of violence is thus to gather a dataset of manually
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Figure 6.1: Two example outputs from the justification system. The top one shows an
explanation of tweet correctly predicted to express “loss” by the classifier; the bottom shows
one incorrectly predicted to express “aggression”.

generated explanations of the classifier.2 With that data, we could redesign the generation

system to use an automatic approach of determining the best explanation design.

We have not performed an quantitative evaluation of the explanations. Due to the lack

of applicable data, any automatic evaluation is out of the question. Additionally, manual

annotation has not been attempted. Instead, these explanations have been discussed with

our Social Work collaborators, who find that they would be confusing for an end user. One

reason for this is lingering issues with the clarity and fluidity of the explanations. Beyond

these issues, though, the explanations also suffer with respect to usefulness for our target

end user because the method the classifier uses is significantly different from the one the

human annotators use.

2If done manually, collecting this dataset would be expensive. One approach is to use descriptions written
by the social work researchers during their annotation process; however, their explanations take into account
more information that our classifier has access to. A method of gathering explanations that are relevant
only to the features the classifier uses is an open question.
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Therefore, one of the outcomes of generating these explanations is that they highlight

the differences between the social work methods of labeling the tweets and the NLP models.

Our process focuses on specific features or aspects of the tweet, albeit including some derived

ones (specifically the emotion scores and POS tags). The social work approach is much more

cohesive, because it takes into account much more context than our classification systems

are able to and does not (usually) rely on single words or phrases. One approach that

is currently being taken on this project, while not necessarily related to generation, is to

incorporate more of the context that is used in the social work approach to classifying these

tweets into our models, so that the NLP approach more closely resembles the social work

one.

We have also found other unexpected applications of the explanations. The original

goal of this system was to provide justifications for the predictions of our classifiers for

predicting “loss” and “aggression” to the user. However, during the development of the

generation system, we also discovered other, potentially more useful applications for it. One

such application is for debugging of the system (especially if the system is debugged by a

user unfamiliar with computer science). A user who is familiar with the domain of our data

would be able to use this system to identify cases where certain features incorrectly act as

evidence for a class. These explanations would be especially useful for that user in detecting

bias in the classifier.

The second example in Figure 6.1 is a good example of how the explanations can be

used to detect problems in the classifier. The strongest evidence from that tweet for the

“aggression” label was the token “gang.” However, since this data comes from a group that

discusses their gangs often on social media, “gang” is often used in tweets that have nothing

to do with violence (such as our example). Therefore, having this token act as particularly

strong evidence for a prediction that a tweet is expressing aggression most likely worsens the

reliability of the classifier overall. Perhaps more importantly, the word “gang” by itself as

evidence of “aggression” for the classifier makes it less trust-worthy to a user who is familiar

with the domain of our data. Making the classification process more transparent is thus the

first step towards identifying these issues and improving on them in the classifier.

This application (of finding the issues with the classifier) can be combined with our

initial goal of explaining how our models work to our social work collaborators, as well as

the end users for the classification system. Since the explanations clarify what the models

are doing when the predict a class for a tweet, they will make our collaboration easier,

while simultaneously making it easier to correct any issues with our models. When used on

real world data, they will also make it easier for the user to identify when the classifier is

incorrect.
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CHAPTER 7

Conclusion

In this thesis, we have discussed three contributions towards the task of predicting gang

violence from social media posts. In this chapter we review the implications of this work

and discuss next steps that can be taken to further the work presented here.

First, we developed a set of supervised classifiers to identify expressions of loss and ag-

gression in gang data, as discussed in Chapter 4. These models were developed as a case

study for future work on this topic, using a small labeled dataset from one Chicago gang

member, Gakirah Barnes. We hypothesized that tweets in these two categories (but espe-

cially the aggressive tweets) are the social media posts that lead to incidents of gun violence.

Our models were successful, and the best-performing supervised classifiers outperformed a

baseline by 13.7 f-score points when predicting expressions of aggression in tweets and by

5.8 points when predicting expressions of loss.

We then built a second classification system, which is discussed in Chapter 5. This system

uses a self-training approach, which allows us to train the model with a small labeled dataset

and a larger, unlabeled one. This was done in order to utilize large number of unlabeled

tweets we currently have without incurring the cost to fully annotate the dataset. While the

results are not a significant improvement over those obtained from our best fully supervised

models, we present a number of potential methods through with our semi-supervised learning

system can be improved.

Finally, in Chapter 6 we present a system that, given a tweet and associated prediction

from one of our classifiers, generates an explanation of that prediction. We designed these

explanations in order to make our classifiers more accessible and trustworthy to a non-

computer scientist user. However, we found that an unexpected (yet extremely useful)

application for these explanations is that they make discovering problems and bias in our

classifier much easier, especially when soliciting feedback from researchers or users outside

of computer science.
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There are also some limitations to this work. For example, we hypothesized that aggres-

sion and loss are the tweets that lead to violence; as of yet, though, we have not conducted

an empirical study to back this up. Another general limitation of this task is the difficulty

of applying NLP tools to the specific language seen in our datasets. Though we had success

adapting NLP tools to this language, they still perform worse than state-of-the-art tools on

Standard English data; this is mostly due to the much larger amount of data available to

work with in Standard English. These limitations and those presented in earlier chapters

can hopefully be addressed by future work on this project (discussed in the next paragraph).

We presented potential avenues of future work that applied specifically to each contribu-

tion in Sections 4.5, 5.3, and 6.2. Another more general task for future work on this project

is to conduct an empirical study which examines if the “aggressive” and “loss” tweets we

identify with our models correlate to incidents of real world violence. A study along these

lines, or an alternative one that would identify which tweets are the ones leading to violence,

would improve our focus and allow us train more helpful classifiers in the future.

In general, this thesis works towards developing a system that can facilitate community

interventions before gun violence occurs. We strive to achieve this by focusing attention on

the tweets that are most high-risk with our classifiers. Furthermore, by explaining why our

models choose these tweets as high-risk, we aim to help the end user in deciding if they agree

with the classifier’s assessment.
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