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Abstract

Although pretrained language models (PLMs)
can be prompted to perform a wide range of lan-
guage tasks, it remains an open question how
much this ability comes from generalizable lin-
guistic understanding versus surface-level lex-
ical patterns. To test this, we present a struc-
tured prompting approach for linguistic struc-
tured prediction tasks, allowing us to perform
zero- and few-shot sequence tagging with au-
toregressive PLMs. We evaluate this approach
on part-of-speech tagging, named entity recog-
nition, and sentence chunking, demonstrating
strong few-shot performance in all cases. We
also find that while PLMs contain significant
prior knowledge of task labels due to task
leakage into the pretraining corpus, structured
prompting can also retrieve linguistic structure
with arbitrary labels. These findings indicate
that the in-context learning ability and linguis-
tic knowledge of PLMs generalizes beyond
memorization of their training data.

1 Introduction

The rapid increase in the scale of pretrained lan-
guage models (PLMs) has led to a new paradigm of
NLP modeling: in-context learning, or prompting
(e.g., Brown et al., 2020; Raffel et al., 2020). In
this setting, the model is used to perform a task
directly via the predictions of the LM head with-
out additional finetuning on the target task, often
with a few demonstrations of the desired behavior
provided within the input. This setup has led to
impressive few-shot performance on various tasks
ranging from classification to summarization and
generation (Liu et al., 2021a).

Due to their broad success on tasks requiring
language understanding, we hypothesize that these
models also contain significant linguistic knowl-
edge. However, we are not aware of existing
prompting methods that can directly test this hy-
pothesis on autoregressive PLMs. Behavioral anal-
ysis of PLMs (Belinkov et al., 2020) uses meth-

C: Alright what is this ? 
T: Alright_INTJ what_PRON is_AUX this_PRON ?_PUNCT
C: I love this color .
T: I_PRON love_VERB this_DET color_NOUN ._PUNCT

demonstration

C: It took a while .
T: It_PRON took_VERB a_

PLM
example

NOUN
DET
VERB
…

Figure 1: Sequence tagging via structured prompting.
Each predicted label is appended to the context along
with the next word to iteratively tag the full sentence.

ods similar to prompting to measure knowledge
stored in language models (Gulordava et al., 2018;
Petroni et al., 2019), but this technique is difficult
to generalize to tasks that predict more complex
structures. Additionally, current approaches for
applying PLMs to linguistic structured prediction
tasks finetune on the downstream task (e.g., Ma
et al., 2022), which confounds measuring underly-
ing model knowledge.

We propose a new approach, structured prompt-
ing, that iteratively prompts autoregressive PLMs
to probe for word- and span-level linguistics framed
as sequence tagging tasks (Section 2). At timestep
t, a label for the t-th word in the sequence is de-
coded from the LM; the model prediction is then
fed back into the model along with the next word
to progress to timestep t + 1. We evaluate our
approach on three sequence tagging tasks: POS
tagging, sentence chunking, and NER. Our experi-
ments show that PLMs can perform effective few-
shot sequence tagging in the structured prompt-
ing setup, and that performance increases with the
demonstration set size and model size, consistent
with other prompting methods (Section 4).

We further analyze structured prompting by ex-



amining how the model generalizes to various rep-
resentations for labels (Section 5) as well as by
analyzing the presence of task data in the pretrain-
ing corpus and how this affects model performance
(Section 6). These experiments show that struc-
tured prompting can recover linguistic information
from the model without using standard task labels,
indicating that PLMs contain this knowledge in a
general manner beyond memorization of the task
from pretraining data. Interestingly, while PLMs
perform best with meaningful labels (such as origi-
nal task labels or full class names in English), the
model can also in-context learn from arbitrary la-
bels. Additionally, the model exhibits strong prior
knowledge of the task labels’ mapping onto the
underlying classes, likely due to the prevalence of
task data in the pretraining corpus.

The contributions of this work are therefore
threefold: (1) we introduce a new paradigm, struc-
tured prompting, that probes PLMs for sequence
knowledge without further training, (2) we find that
this approach recovers linguistic structure from
PLMs in a few-shot manner, and (3) we present
an analysis to quantify the effect of label form
and pretraining data on in-context learning perfor-
mance. Overall, our findings provide insight into
both the linguistic generalizations learned by PLMs
and how in-context learning works in general.

2 Structured Prompting of Pretrained
Language Models

We propose a sequential method for performing se-
quence tagging with PLMs via in-context learning,
which we refer to as structured prompting (Figure
1). The model is given k (context, tagged sequence)
pairs as the task demonstration and the example
sentence to be labeled. The model then iteratively
tags the words in the example with constrained
decoding over a fixed set of labels.

More specifically, given a set of labels L and an
input sequence c containing k demonstration pairs
as well as the full text of the example sentence
S = s0, ..., sn, at each time step t the language
model M encodes [c; st] and labels st with ℓ̂t =
argmax

ℓ∈L
PM (ℓ|c, st). We then update the input se-

quence by appending the current word st and the
predicted label ℓ̂t to the end of c. Multi-token labels
are scored with the average log-likelihood over all
tokens PM (ℓ|c) = 1

|ℓ|
∑|ℓ|

i=0 PM (yi|c, y0, ..., yi−1),
where yj is the jth subword token in ℓ.

This approach to in-context learning tags an en-

tire sequence with a single pass over the context.
It also allows the model to condition on past pre-
dictions while labeling the current word. As we
demonstrate in Section 4, these features allow us
to apply large autoregressive language models to a
broad class of core NLP tasks in a few-shot manner.

3 Experimental Setup

3.1 Prompt Formatting

We use a lightweight prompt format with limited
natural language guidance about the task provided
to the model as shown in Figure 1; the letters “C”
and “T” in the figure represent the inputs “Con-
text” and “Tagged” respectively. For each task, we
represent each tag with the token or sequence of
tokens corresponding to the surface form of the
label provided by the dataset.

In general, our preliminary experiments with
varied prompt formats had little effect on perfor-
mance. Specifically, performance was stable across
the choice of delimiter and other minor formatting
differences. However, we note that including the
word in the “Tagged” sequence is important; on
GPT-J, performance degrades by 84% on POS and
79% on NER when decoding the label sequence
without repeating the word (i.e., “Tagged: DET
NOUN...”).

3.2 Sequence Tagging Tasks

We consider the following English tasks framed
as sequence tagging problems in evaluating the
proposed structured prompting method. For tasks
involving tagging spans of text, we label each token
in the span using the BIO label format: given a span
of m tokens labeled ℓ, the first token is labeled as
the beginning of the span with “B-ℓ”, the remaining
m-1 tokens are labeled as inside the span with “I-ℓ”,
and tokens not included in the span are labeled as
outside the span or “O”).

Part-of-Speech (POS) Tagging We evaluate
POS tagging performance on English Universal
Dependencies (UD) with the UPOS tagset (Nivre
et al., 2020). Specifically, we use the treebank an-
notated on the GUM corpus (Zeldes, 2017).

Sentence Chunking Chunking, or shallow pars-
ing, partitions the words in a sentence into non-
overlapping spans of syntactic meaning. We eval-
uate PLMs on chunking with the CONLL2000
dataset from Sang and Buchholz (2000), which
frames chunking as a BIO tagging task.
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Figure 2: Results of the structured prompting evaluation. POS is evaluated on accuracy; the other tasks are evaluated
with F1. (a) Results of GPT-NeoX (20B parameters) compared to task baselines. (b) Performance across different
model sizes. (c) Performance of GPT-NeoX across different quantities of k demonstrations.

Named Entity Recognition (NER) We evaluate
the ability of structured prompting to extract named
entities from PLMs with NER. This is measured
as a BIO tagging task on the CONLL2003 dataset
(Sang and De Meulder, 2003).

3.3 Models

We report performance on seven language models,
ranging from 125 million to 175 billion parameters.

GPT-Neo This set of PLMs contains models
trained on the Pile (Gao et al., 2020) that from
125 million to 2.7 billion parameters (Gao et al.,
2020), 6.7 billion parameters (Wang and Komat-
suzaki, 2021), and 20 billion parameters (Black
et al., 2022). We use the GPT-Neo models avail-
able through Huggingface (Wolf et al., 2019).

GPT-3 We also perform structured prompting
with the GPT-3 models (Brown et al., 2020) via
the OpenAI API. We use the base GPT-Curie
(∼6B parameters) and GPT-Davinci (∼175B
parameters) models that have undergone no
additional instruction finetuning on POS tagging.
Due to the cost of running these models through
the API, we generate the GPT-Davinci output
with unconstrained top-1 sampling rather than the
constrained decoding setup described in Section 2.

In preliminary experiments, we also tested struc-
tured prompting on several OPT models (Zhang
et al., 2022). We found their performance was
significantly worse and did not scale with model
size (up to 66B parameters) on POS tagging and
NER. We leave a more thorough examination of
this behavior discrepancy for future work.

3.4 Additional Experimental Details
We report the mean and standard error across m
runs for each experiment. For each of these runs,
k demonstrations are sampled from the training
dataset at random, with the condition that the k
demonstrations cover the label space of the task
if possible. We use k = 10 sentences as demon-
strations and perform m = 5 runs per experiment
unless otherwise stated.

Each model is evaluated on 1000 examples ran-
domly sampled from the task test set (see Appendix
A.1 for a discussion on how this choice affects per-
formance estimates). The evaluation subset is held
fixed across all five runs, and the evaluation data
and selection of demonstrations for each run are
fixed across models for each task.

To obtain the tag sequence for each example, we
greedily take the top-1 label (with the highest log
likelihood) for each word. We also enforce hard
constraints for the span-labeling tasks involving
BIO tagging (chunking, NER) to ensure a valid
BIO tag sequence (e.g., I-X tags can only follow a
previous B-X or I-X tag). Empirically, we find that
enforcing BIO constraints makes little difference
in the method’s overall performance; however, we
use them as they ensure valid output sequences.
Appendix A.2 compares model performance with
and without BIO constraints.

4 Structured Prompting Results

We measure the performance of structured prompt-
ing on three sequence tagging tasks. This evalua-
tion aims to (1) validate that structured prompting
follows prior prompting setups in terms of model
and k-shot scaling trends and (2) investigate the
extent to which the approach extracts these struc-



0.0 0.5 1.0 1.5 2.0
Model Size 1e10

60

65

70

75

80

85

Ac
c.

POS Tagging

(a)

Tr
ue

Predicted

POS (20B)

(b)

Tr
ue

Predicted

NER (20B)

(c)

Figure 3: Error analysis of structured prompting for GPT-Neo series. (a) POS performance on different sets of
10-shot demonstrations. (b) Confusion matrix for GPT-NeoX on NER and (c) POS tagging, aggregated across runs.

tures from the model. We then quantify the types
of errors made with structured prompting.

4.1 Overall Results

Figure 2 presents the results of our primary struc-
tured prompting evaluation. We consider the perfor-
mance of GPT-NeoX (Black et al., 2022) compared
to task baselines: overall majority, in which each
word is labeled with the most frequent tag in the
training set, and per-word majority, where each
word is labeled with the tag it most commonly ap-
peared within the training data (left panel).1 All
baselines are calculated on the full training set and
so use more labeled data than the PLM; the per-
word majority is a particularly strong baseline as
words frequently occur with the same tag.

Structured prompting performs effective few-
shot sequence tagging We find that GPT-NeoX
significantly outperforms each baseline on POS
tagging and NER, and the model slightly underper-
forms the per-word majority baseline on sentence
chunking by 4.2 points. Overall, the approach per-
forms worse for the BIO span-labeling tasks than
for word-level POS tagging. We hypothesize that
the former tasks are more complex, as they require
the model to determine spans and more detailed
linguistic knowledge.

Structured prompting scales with model and
demonstration size We observe that the perfor-
mance of structured prompting improves with scale
across GPT-Neo models (center panel). Model per-
formance also improves with additional demonstra-
tions (right panel); both of these trends are con-

1For BIO tasks, the majority labels correspond to “O”
(NER) and “I-NP” (chunking). The CONLL evaluation script
only scores labeled spans, giving an overall majority F1 of 0.

Size Model k Acc. SE

∼6B
GPT-J∗ 5 79.01 2.95

GPT-Curie 5 66.27 0.46

∼175B
GPT-Davinci† 5 59.65 2.84
GPT-Davinci† 10 65.90 1.34

Table 1: Structured Prompting results on POS tagging
for GPT-Curie and GPT-Davinci. SE is standard error.
∗: model from GPT-Neo series of a similar size to Curie;
†: evaluated with greedy unconstrained decoding.

sistent with prior prompting results (e.g., Black
et al., 2022). However, the extent to which addi-
tional demonstrations help varies: NER improves
more with larger sizes of k than POS and chunk-
ing, likely because labeled spans are more sparse
in NER. Notably, in the zero-shot case the model
achieves around 17% accuracy on POS tagging
when randomly predicting labels would yield 5.8%.

Structured prompting with GPT-3 Table 1
compares two GPT-3 models to the GPT-Neo series
on POS tagging.2 We first compare the 6B param-
eter GPT-Curie (Gao, 2021) to the similarly sized
GPT-J model in a 5-shot setting. We find that GPT-
Curie underperforms GPT-J by 12.7 points; both
models also underperform the per-word majority
baseline in this setting.

We then evaluate the largest GPT-3 model,
GPT-Davinci, on POS tagging with greedy uncon-
strained decoding of the entire output sequence.
Davinci performs reasonably well and scores simi-
larly to Curie despite the more difficult decoding
setting; many errors arise from format errors in the
generated output for longer sentences. If we only

2Each experiment reported in this section is repeated across
three runs rather than five.



evaluate examples that occur prior to these format
errors, performance on that subset of the evaluation
data is 72.85 ± 1.3 at k=5 and 78.04 ± 0.8 at k=10.

4.2 Error Analysis

Figure 3 presents an error analysis of structured
prompting; complete analyses for other tasks are
provided in Appendix A.3. We first break out per-
formance across runs and evaluate how the choice
of in-context examples affects performance (left
panel). For POS tagging, the choice of demonstra-
tions makes a difference, with some sets perform-
ing better than others across models and a perfor-
mance gap of 4.8 accuracy points between the best
and worst run on the 20B parameter model. NER
exhibits similar results to POS; however, chunk-
ing performance of different demonstration sets is
much more varied and inconsistent across models.

Next, we examine common error types in struc-
tured prompting with confusion matrices (center
and right panel). We zero out the diagonal (rep-
resenting correct predictions) and normalize the
matrices for clarity. Many of the mistakes made
by the 20B parameter model on POS tagging are
for syntactically similar roles, such as confusing
proper nouns for nouns and labeling auxiliary verbs
as verbs. However, for BIO tagging the models are
not always well-calibrated: on NER, the model
most often mislabels “O” tokens, indicating that
the model overpredicts named entities.

Given that the choice of demonstrations affects
PLM performance, another consideration is: how
consistent are the error types across runs? To
investigate this, we calculate the pairwise Spear-
man correlations between the confusion matrices
of each run. These correlations are very high for
the 20B parameter model, indicating the model
makes similar types of error across runs: on aver-
age ρ = 0.77 for POS tagging, 0.83 for NER, and
0.88 for chunking; all pairwise correlations have
p-values << 0.001. Additionally, the models seem
to become more robust across demonstration sets
at scale; confusion matrix correlations for the 2.7B
model are lower (ρ = 0.71, 0.64, 0.66 for POS,
NER, and chunking, respectively).

5 When Does Structured Prompting
Work?

We now investigate how structured prompting sur-
faces linguistic structure from PLMs, using the
behavior of GPT-NeoX on POS tagging and NER

Figure 4: Performance of GPT-NeoX when the labels
are seen vs. not seen in the demonstration. Partial labels
are those only seen as B-<label> tags in BIO tagging.

as a case study. We find that (1) in some cases, the
model generalizes to labels not seen in the demon-
stration, and (2) the label form has a large effect on
performance. Specifically, the model can learn in
context when arbitrary labels represent classes but
will ignore label mappings in the demonstration
that contradict its prior task knowledge.

5.1 Effect of Seen Labels

In Section 4.1, we see that the model obtains above
random chance accuracy on zero-shot POS tagging,
suggesting that the model does not need to observe
the label to associate it with the correct class. To
analyze this, we compare the model’s performance
when the label is and is not seen in the demonstra-
tion, averaged across k-shot runs.

Model performance on unseen tags, and the
gain in performance after observing the tag, varies
greatly by label class (Figure 4). For some classes
in POS tagging, such as ADJ and PUNCT, the
model obtains around 50% accuracy without see-
ing the label. However, unseen performance on
AUX in POS tagging and MISC in NER is close to
0%. Furthermore, while observing tags like LOC
in NER greatly improves performance, other tags
like ADJ and MISC improve much less when seen.

5.2 Effect of Label Form

We hypothesize that the behavior observed in Sec-
tion 5.1 depends on how informative the label form
is for the class. Therefore, we compare the model



Figure 5: Results of ablating the surface form of the
labels for structured prompting.

performance on (1) the original task labels; (2)
shuffled task labels, where we shuffle the label sur-
face forms but maintain underlying class correspon-
dences to words; and (3) proxy labels, where we
represent the classes with arbitrary tokens – here,
consecutive integers ranging from 11 to 27 (POS)
and from 11 to 14 (NER). (Figure 5).

Label shuffling confuses GPT-NeoX Shuffling
the labels greatly hurts overall model performance,
with POS scores decreasing overall by 50.5%, and
NER by 65.9%. Some classes are more robust to
the shuffled labels than others: the AUX and DET
parts-of-speech score within the standard error of
the original class performance, whereas ADJ accu-
racy drops by 96.2% to near zero.

Interestingly, most mistakes made in the shuffled
setting (61.4%) result from the model predicting
the true class label rather than the shuffled one from
the demonstration. This occurs more frequently for
classes whose performance severely degrades when
shuffled: 93.9% of errors on the NOUN class are
due to this phenomenon, and across classes, there
is a strong correlation between performance degra-
dation and the percent of errors predicting the true
label (ρ = 0.69, p < 0.05). This result suggests
that PLMs ignore in-context label mappings when
the model already associates the label with a spe-
cific class, similar to findings in Min et al. (2022).

GPT-NeoX in-context learns with arbitrary
proxy labels Model behavior with the proxy la-
bels is closer to the original labels, with perfor-

mance decreasing by 25.8% on POS and 30.5%
on NER. Indeed, on many labels that significantly
degrade with label shuffling, the model performs
significantly better on the proxy labels (NOUN and
CCONJ in POS tagging, PER in NER). These re-
sults demonstrate that the model is able to perform
in-context learning to extract linguistic structure,
even when the tags are uninformative.

6 Sources of Linguistic Knowledge in
Pretraining Corpus

The results in Section 5 demonstrate that the choice
of label form can greatly affect structured prompt-
ing performance and implies that the model con-
tains prior task knowledge. We analyze contexts in
which the labels for POS tagging and NER appear
in the Pile (Gao et al., 2020) to better understand
what, if any, task information GPT-NeoX learns
from pretraining.

Our analysis shows that task information occurs
in the pretraining data, both as labeled examples
(Section 6.1) and in other related contexts (Sec-
tion 6.2). However, we find no evidence of test
data leakage. Given these findings, we evaluate
the model in a new setting that substitutes an En-
glish description of each class (e.g., “adjective”,
“person”) for the label in order to control for la-
bel leakage while still providing meaningful labels
(Section 6.3).

6.1 Task Data Contamination

A likely location for task labels to occur is leaked
task examples from pretraining data sources. To
test this, we search the Pile for instances of labeled
POS and NER data (Table 2, the full results are
given in Appendix A.4).

POS Tagging Since the POS data is obtained
from UD treebanks, we search the Pile for each
label as it would appear in the treebank (with tab
whitespace on either side of it, see CCONJ example
context). We find a significant amount of UD data
formatted in this manner: up to 33,000 occurrences
for an individual label (NOUN). This is unsurpris-
ing given that Github – where UD treebanks are
hosted – is a data source for the Pile. However, we
find no evidence of test data leakage across any of
the POS label occurrences when compared to the
GUM treebank (Zeldes, 2017).3

3We also compare the test set against the Pile via other
methods (exact document match and searching for individual
lines); none of these match any test data against the Pile.



Label Freq. Task Stats Example Contexts
POS Tagging UD Format

The 10 most frequent relations where parent and child node agree in ‘Polarity‘:NOUN 360k 9.29% <tt>NOUN —-> ADJ</tt> (2; 100%) (GitHub)
CCONJ 22k 23.48% 13 \t und \t und \t CCONJ \t KON \t _ \t 14 \t cc (GitHub)
DET 1.53M 0.72% DET: determiner, e.g. a, an, the \n INTJ: interjection, e.g. psst... (StackExchange)
NER Relevant?

Bacterial pellets were lysed in 10 ml B-PER Bacterial Protein ExtractionB-PER 5,655 26/100 Reagent... (PubMed)
I-LOC 2,197 43/100 y = np.asarray("B-PER O O B-LOC I-LOC O B-ORG".split()) (StackExchange)

*I-PER* label usually follows *B-PER* and *I-PER*, but it cannot followB-ORG 2603 80/100 *B-ORG* or *I-ORG*. (Arxiv)
I-MISC 907 76/100 My(O) favorite(O) book(O) is(O) harry(B-MISC) potter(I-MISC)... (StackExchange)

Table 2: Analysis of the Pile for labels from UD POS tagset and CONLL03 NER tagset. Task Stats document the
percentage of occurrences that are in the UD format for POS tagging and the proportion of sampled documents
relevant to NER. Some examples are slightly edited for readability.

We also perform a closer analysis of the CCONJ
label: we compare each occurrence against all nine
English treebanks in UD and manually examine
it. We find that many CCONJ occurrences can be
found in the English Web Treebank (EWT; Silveira
et al., 2014) (1052/118/155 from the train/dev/test
splits); others match with Parallel Universal Depen-
dencies (PUD; Zeman et al., 2017) (10 occurrences
from test set) and ParaTUT (Sanguinetti and Bosco,
2014) (1 occurrence from development set).

Our manual analysis finds that most of the
CCONJ occurrences are in non-English documents
(77%); other languages whose treebanks we see
include Finnish, German, and Arabic, among many
others.4 We also observe that every tab-separated
instance of CCONJ occurs in the UD treebank for-
mat, indicating that this automatic filter is a reason-
able estimate of UD data leakage across labels.

NER Task data leakage for NER is much more
limited than POS: the most frequent label occurs
5,655 times in the Pile (other than “O” which oc-
curs very frequently in many contexts). Since the
CONLL format separates the tags with spaces in-
stead of tabs, it is more difficult to filter for data
leakage. Instead, we manually evaluate 100 exam-
ples for the BIO labels and give the proportion of
the sample that is relevant for NER.

Only a subset of relevant occurrences includes
labeled data – our analysis found that labeled data
is not common, and most cases are single exam-
ple sentences annotated in various ways that do
not necessarily follow the CONLL format (see I-

4This is unsurprising: though the Pile is characterized as
an "English text corpus" (Gao et al., 2020), prior work has
found similar corpora derived from the web contain significant
amounts of non-English text (Blevins and Zettlemoyer, 2022).

MISC example context). Similar to POS tagging,
we also find labeled examples in non-English lan-
guages; notably, some of the examples observed
are incorrectly labeled.5 This highlights that while
the model sees task data during pretraining, the
quality and accuracy of that data are unverified.

6.2 Labels in Other Contexts

During the data analysis, we also observe tags from
our tasks in settings other than labeled data. Other
relevant contexts are task documentation or descrip-
tions (see NOUN, DET, and B-ORG example con-
texts) and code related to the task (I-LOC example
context). These contexts are particularly interest-
ing, as they provide information that may help the
model learn by explaining the task in natural lan-
guage or code, rather than via input/output pairs.

We also observe instances of labels that are unre-
lated to the task. This is more common for the POS
tags; whereas, for NER labels, up to 80% of the
sampled contexts are related to the task. The topic
of these unrelated contexts varies widely across
labels, from biomedical and legal texts (see B-
PER example context) to unrelated source code
and news articles.

6.3 Relationship Between Labels and Classes

Due to the quantity of task data uncovered in the
Pile, we would like to control for the effect of pre-
training on labeled data. To this end, we evaluate
GPT-NeoX on semantically meaningful labels not
previously seen in labeled contexts; specifically, we
replace the task labels with the English name for

5For example, the phrase “l’entreprise/O SpaceX/O...” oc-
curs in a WebText2 document; however, SpaceX is a named
entity that should be labeled as B-ORG.



Label Sets
Origin. Shuffle Proxy Words

POS Tagging

∆
Acc.

Origin. 83.55
Shuffle -42.11 41.44
Proxy -21.57 20.54 61.98
Words -5.43 36.67 16.13 78.11

ρ

Origin. 1
Shuffle 0.676 1
Proxy 0.934* 0.718 1
Words 0.924* 0.667 0.909* 1

NER

∆
F1

Origin. 58.05
Shuffle -38.28 19.77
Proxy -17.65 20.63 40.40
Words -1.17† 37.11 -16.48 56.88

Table 3: Performance deltas (∆, column - row) and
spearman correlations (ρ) of classes between label sets.
∆ diagonals report performance with that set. †: delta
is within standard error; *: p << 0.001.

each class (e.g., adjective, B-location), which we
refer to as the words label set. The model achieves
an accuracy of 78.11 ± 1.46 on POS tagging and
an F1 score of 56.88 ± 0.86 for NER in this setting.

In Table 3, we compare the performance between
these label sets and evaluate how correlated indi-
vidual class performances are across these sets. We
observe an identical ranking across label sets in
POS tagging and NER. On NER, the difference
in model performance between the true labels and
words as labels is within standard error. However,
on POS there is a small but significant decrease
of 5.4 points between the two; this drop in perfor-
mance likely quantifies the benefit of observing the
POS task data in the Pile.

The correlation study shows that performance
across classes on the original, proxy, and words
label sets for POS tagging are all strongly corre-
lated (ρ > 0.9). However, their correlations with the
shuffled labels are less significant; this difference is
likely due to the prior task knowledge GPT-NeoX
has for UD labels leading to predicting the actual
label of the class rather than the shuffled one, as
seen in Section 5.2.

7 Related Work

Prompting PLMs for Sequence Information
Recent work has applied various prompting ap-
proaches to sequence tagging tasks, primarily fo-
cusing on NER (Cui et al., 2021; Ma et al., 2022).
However, these approaches also require further
training, most often by learning new prompt embed-
dings for the task (Li et al., 2022; Liu et al., 2022b;

Chen et al., 2022). Other work has finetuned lan-
guage models to apply them to sequence tagging
tasks (Liu et al., 2022a). In contrast, our approach
requires no additional parameters to be learned.
More similar to our work is the sequence tagging
method in Shliazhko et al. (2022), though their ap-
proach prompts the model separately for each word
in the sentence. Additionally, similar approaches
to prompting have been proposed for other tasks;
these methods decompose a target task and repeat-
edly prompt the model on subtasks, building on
the model’s outputs to generate the final prediction
(Zhou et al., 2022; Press et al., 2022). However,
these approaches solve a different subset of NLP
tasks and use the outputs from the intermediate
prompting steps differently (i.e., by conditioning
on them in future prompting steps, whereas in struc-
tured prompting each output is a predicted label).

Probing Pretrained Models There is extensive
work on probing models for their underlying knowl-
edge (Belinkov et al., 2017; Blevins et al., 2018;
Gulordava et al., 2018, inter alia.). The approach
has become particularly popular for analyzing
masked PLMs (e.g., Liu et al., 2019, 2021b), with
behavioral probes (e.g. Petroni et al., 2019; Bala-
subramanian et al., 2020) in particular using the
LM setup to elicit knowledge from the model.

However, prompting autoregressive PLMs
(Brown et al., 2020; Schick and Schütze, 2021; Gao
et al., 2021), though technically similar to behav-
ioral probing, is usually not framed as probing the
underlying model for knowledge. Some exceptions
are Alivanistos et al. (2022), which uses prompting
techniques to probe the LM for knowledge base
relations, and Li et al. (2022), which replaces diag-
nostic probes with trained prompt embeddings for
model analysis. We extend this framing by apply-
ing structured prompting as a behavioral probe for
linguistic structure.

Analysis of Prompting Methods The results of
the structured prompting setup ablations are consis-
tent with prior work. Specifically, our observation
of the model’s prior label knowledge is similar to
Min et al. (2022). We expand on their findings by
showing that the model can still perform in-context
learning with proxy labels where the model has no
prior mapping for the task.

Other work has also documented the presence of
task data in common pretraining corpora (Dodge
et al., 2021), shown the effect of pretraining term



frequencies on in-context performance (Razeghi
et al., 2022), and demonstrated the ability of LMs
to learn from task data during pretraining (Magar
and Schwartz, 2022). Similarly, we document the
presence of task data and labels in the Pile and find
that this signal can help task performance due to
the model prior over the labels.

8 Conclusion

We propose structured prompting, a general
paradigm for sequence tagging with autoregressive
PLMs. Our experiments show structured prompt-
ing performs well on three few-shot sequence tag-
ging tasks. Further analysis shows that (1) the
approach can elicit linguistic structure in many set-
tings, including when the labels are unrelated to
the task, and (2) while labeled task data is present
in the pretraining corpora, using informative labels
not found in task data gives similar performance to
using the task labels. These findings indicate that
the model’s knowledge of linguistic structure is
more general than the memorization of the task
data. More generally, our approach provides a
method to probe PLMs for sequence knowledge
without training new or existing parameters.

Limitatons

Data Leakage As discussed in Section 6.1, we
find evidence of labeled task data for POS tagging
and (to a more limited extent) NER in the Pile. We
attempt to control for this leakage by evaluating
with class names as labels rather than the origi-
nal tag set; however, due to the cost of training
recent PLMs and their large pretraining corpora,
it is impossible to control for data leakage when
prompting existing models completely.

Both Brown et al. (2020) and Chowdhery et al.
(2022) discuss the presence of task data in their pre-
training corpora when training PLMs and the diffi-
culty of controlling for it in their evaluations. For
downstream users, this issue is further compounded
in cases where the pretraining data is unavailable,
as it is impossible to even check for contamination
in those cases (such as our GPT-3 experiments).

Experimental Limitations with GPT-3 We only
perform a subset of our evaluations of structured
prompting on GPT-3, due to the cost of running the
models in the API; this also means we do not run
comprehensive prompt ablations to better tailor the
setup for these models. Additionally, the results

(i.e., lower performance than comparable GPT-Neo
models) are difficult to interpret due to the black
box nature of the GPT-3 models – it may be due
to pretraining data differences (as mentioned in the
previous limitation), the lack of prompt engineering
for the models, or some other discrepancy.

English-only Experiments The experiments in
this paper focus on English sequence tagging tasks,
and it is unclear how well the proposed method
generalizes to other languages. We find evidence
of task-relevant data in pretraining corpora in non-
English languages, which suggests there is signal
for the approach to work in other languages. How-
ever, prior work shows that PLMs behave much
worse when prompted outside of English (Lin et al.,
2022; Shi et al., 2022) but does not address the ef-
fect of pretraining data on this phenomenon.
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Figure 6: Additional error analysis results for Section 4.2: performance across model sizes for different demonstra-
tions sets on (a) NER and (b) chunking, and (c) confusion matrix for GPT-NeoX on chunking.

Task Model Eval Setting
Fixed Varied

POS
(Acc.)

GPT-Neo-125M 64.35 ± 1.6 64.38 ± 1.6
GPT-Neo-2.7B 70.36 ± 3.0 70.32 ± 3.0
GPT-J-6B 83.13 ± 1.1 83.10 ± 1.1

NER
(F1)

GPT-Neo-125M 16.03 ± 1.7 16.63 ± 2.1
GPT-Neo-2.7M 38.90 ± 2.7 38.72 ± 2.6
GPT-J-6B 51.43 ± 0.7 52.10 ± 0.9

Table 4: Results of ablating the choice of evaluation
data for structured prompting on POS tagging and NER.

Task Model With BIO Constraints?
Yes No

NER
(F1)

GPT-Neo-125M 15.52 ± 1.7 16.03 ± 1.8
GPT-J-6B 53.03 ± 1.0 51.43 ± 0.7
GPT-NeoX-20B 58.05 ± 2.1 57.00 ± 1.9

Chunk
(F1)

GPT-Neo-125M 36.85 ± 1.3 38.32 ± 1.5
GPT-J-6B 39.63 ± 3.4 40.12 ± 3.5
GPT-NeoX-20B 57.60 ± 2.4 59.25 ± 2.7

Table 5: Results of ablating the BIO constraints for
structured prompting on NER and chunking.

A.1 Choice of evaluation set

For computational reasons, the models are evalu-
ated on a fixed subset of 1000 randomly sampled
test examples for each task. As using a smaller
evaluation set can introduce noise into our perfor-
mance estimates, we run a similar experiment on
a number of the smaller models but resample the
evaluation examples across five runs in addition to
varying the demonstrations (Table 4). We find that
varying the evaluation examples has a minimal ef-
fect on both the average performance and standard
error on both POS tagging and NER.

A.2 Ablating BIO Constraints

During this work, we found that limiting the poten-
tial output tag space from the model with global

BIO constraints made little difference in model per-
formance for both NER and chunking (Table 5).
Specifically, in every case, the difference between
the two settings was within the standard error of the
means across runs, with NER performing slightly
better with the constraints and chunking perform-
ing slightly worse.

A.3 Full Results of Error Analysis

We provide additional error analysis results from
Section 4.2 in Figure 6.

A.4 Full Results of Pretraining Data Analysis

The complete data analysis for labels not shown in
Section 6 is detailed in Table 7.

B Complete Results of Structured
Prompting Experiments

We provide the full numerical results for the exper-
iments in Section 4.1 in Table 6.

C Responsible NLP Miscellanea

This section details information from the Respon-
sible NLP Checklist not covered elsewhere in the
paper.

Compute Costs The computational cost of each
prompting experiment on the GPT-Neo series of
models varies depending on the task and size of the
underlying PLM: run times for a single experiment
range from around 43 minutes for POS tagging on
the 125M parameter model to approximately 50
hours for chunking with GPT-NeoX (20B parame-
ters). The smaller GPT-neo models (fewer than 6B
parameters) are run on a single Nvidia RTX-6000,
and larger models are run on one or more Nvidia
A40 GPUs.



Model Size k = Task
POS (Acc.) NER (F1) Chunk (F1)

125M

10

64.35 ± 1.6 15.52 ± 1.7 36.85 ± 1.3
1.3B 68.45 ± 1.7 39.07 ± 1.2 37.56 ± 4.5
2.7B 70.36 ± 3.0 40.16 ± 2.6 53.18 ± 2.1
6B 83.13 ± 1.1 53.03 ± 1.0 39.63 ± 3.4
20B 83.56 ± 0.8 58.05 ± 2.1 57.60 ± 3.4

20B

0 17.20 3.79 1.08
1 70.84 ± 1.9 10.26 ± 1.1 32.02 ± 3.9
3 79.08 ± 1.1 33.63 ± 2.8 48.33 ± 3.6
5 81.72 ± 1.2 40.60 ± 1.6 50.98 ± 3.0
7 82.67 ± 0.8 52.12 ± 3.7 54.00 ± 2.7
9 83.56 ± 0.8 58.08 ± 1.8 54.84 ± 2.9

Baselines
Majority Label 17.75 0.00 0.00

Per-Span Majority 80.76 47.52 61.84

Table 6: Full Results of GPT-Neo series experiments from Section 4.1.

For the GPT-3 POS tagging experiments, we
run the models through the OpenAI API. When
performing constrained decoding through the API,
each example requires multiple calls per word in
the sentence to decode the label forms, since model
state caching for custom decoding is not available.
For GPT-Curie (k=5), with constrained decoding,
on average 230M tokens are submitted to the API
per run; with Davinci (k=10, where we only per-
formed unconstrained decoding), an average of
1.2M tokens are submitted per run.

Intended Usage of Artifacts To the best of our
knowledge, our experiments all fall within the in-
tended use cases of the GPT-Neo models and the
Pile dataset, as well as the usage policy of the Ope-
nAI API.

Label Freq. Task Stats
POS Tagging UD Format
ADJ 449,789 2.49%
ADP 1,847,009 0.80%
ADV 2,315,004 0.42%
AUX 572,373 1.71%
CCONJ 22,050 23.48%
DET 1,528,722 0.72%
INTJ 28,882 2.11%
NOUN 360,034 9.29%
NUM 3,642,199 0.10%
PART 4,573,194 0.09%
PRON 130,754 11.00%
PROPN 50,247 18.81%
PUNCT 131,344 18.27%
SCONJ 18,307 17.68%
SYM 1,189,552 0.08%
VERB 451,447 4.66%
X – –
NER
B-PER 5,655 –
I-PER 4,678 –
B-ORG 2,603 –
I-ORG 3,793 –
B-LOC 4,467 –
I-LOC 2,197 –
B-MISC 1,133 –
I-MISC 907 –
O – –

Table 7: Automatic analysis of the Pile for labels from
UD POS tagset and CONLL03 NER tagset. Task Stats
document the percentage of occurrences that are in the
UD format for POS tagging. We do not search labels
that are individual characters due to how frequently they
appear in the corpus.


