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Abstract

Despite their popularity in non-English NLP,
multilingual language models often underper-
form monolingual ones due to inter-language
competition for model parameters. We pro-
pose Cross-lingual Expert Language Models
(X-ELM), which mitigate this competition by
independently training language models on
subsets of the multilingual corpus. This pro-
cess specializes X-ELMs to different languages
while remaining effective as a multilingual en-
semble. Our experiments show that when given
the same compute budget, X-ELM outperforms
jointly trained multilingual models across all
considered languages and that these gains trans-
fer to downstream tasks. X-ELM provides addi-
tional benefits over performance improvements:
new experts can be iteratively added, adapt-
ing X-ELM to new languages without catas-
trophic forgetting. Furthermore, training is
asynchronous, reducing the hardware require-
ments for multilingual training and democratiz-
ing multilingual modeling.

1 Introduction

Massively multilingual language models (LMs),
which are trained on terabytes of text in a hundred
or more languages, underlie almost all non-English
and cross-lingual NLP applications (Scao et al.,
2022; Lin et al., 2022, inter alia). Despite their
wide adoption, these models come at a cost: by
modeling many languages in a single model, there
is inter-language competition for fixed model ca-
pacity; this causes performance on individual lan-
guages to degrade relative to monolingual models
(Conneau et al., 2020; Chang et al., 2023). Further-
more, this phenomenon (termed the curse of mul-
tilinguality) can significantly harm low-resource
languages (Wu and Dredze, 2020).
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In this paper, we address the curse of multi-
linguality with Cross-lingual Expert Language
Models (X-ELM, Figure 1), an ensemble of lan-
guage models initialized from a pretrained multilin-
gual model and each independently trained on a dif-
ferent subset of a multilingual corpus. Our ensem-
ble allows for efficient scaling of model capacity
to better represent all the corpus languages. These
X-ELMs are trained with x-BTM, a new extension
of the Branch-Train-Merge paradigm (BTM; Li
et al., 2022; Gururangan et al., 2023, §2) to the
more heterogenous multilingual setting.

x-BTM improves over existing BTM techniques
by introducing (1) a new method for balanced clus-
tering of multilingual data based on typological
similarity and (2) Hierarchical Multi-Round train-
ing (HMR), an algorithm for efficiently training
new experts specialized to unseen languages or
other distributions of multilingual data. Once the
initial X-ELMs are trained, we dynamically select
experts to perform inference (§3.3). We can also
efficiently adapt X-ELMs to novel settings with ad-
ditional rounds of x-BTM on new experts branched
from existing X-ELMs (§4); this improves the over-
all X-ELM set without altering the existing experts.

We train X-ELMs on 20 total languages—
including adapting to 4 unseen ones–and on up
to 21 billion training tokens. Our experiments
demonstrate that X-ELMs outperform the dense lan-
guage models given the same compute budget in
every considered experimental setting, with im-
provements of up to 3.8 perplexity points (§6). Fur-
thermore, the perplexity gains observed in X-ELM

languages are well-balanced across language re-
sourcedness, and adapting the models to new lan-
guages via HMR training significantly outperforms
standard language-adaptive pretraining methods.
We also show that the language modeling gains of
X-ELM hold on downstream task evaluations (§7).

Multilingual modeling with X-ELM provides ad-
ditional benefits over improved performance. Train-
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Figure 1: Overview of the X-ELM pretraining procedure. Left: We partition the multilingual text corpus into k
subsets either through automatic TF-IDF clustering of documents or through grouping languages by linguistic
typology. Center: Branch-Train-Merge (BTM) pretraining method. We initialize (branch) k experts from a seed
LM, train each expert on a different cluster from the pretraining corpus, and merge the experts into a set of X-ELMs.
Right: Hierarchical Multi-Round (HMR) training procedure (§4).

ing a set of X-ELMs is more computationally effi-
cient than a comparable dense model; each expert is
trained independently, which removes the overhead
cost of cross-GPU synchronization (Li et al., 2022)
and allows experts to be trained asynchronously in
low-compute settings. Similarly, adapting X-ELMs
to new languages is more efficient than continued
training of a dense LM and does not risk catas-
trophic forgetting of previously seen languages, as
adding a new X-ELM does not change the existing
experts. As a result, X-ELMs allow much more effi-
cient modeling than prior multilingual approaches,
democratizing work on building and improving
multilingual systems.

2 Background: Branch-Train-Merge

Multilingual LMs are typically trained in a dense
manner, where a single set of parameters are up-
dated with every training batch. When training
large LMs, the dense training setup calculates gradi-
ents on and synchronizes model parameters across
many GPUs.1 This requires all GPUs to be avail-
able simultaneously and incurs communication
costs that prolong training.

Branch-Train-Merge (BTM; Li et al. 2022) alle-
viates this cost by dividing the total compute among
smaller expert language models that are trained in-
dependently on different domains (or subsets of a
corpus) and then combined during inference time.
While the total number of parameters increases
with the number of experts, inference with these

1For example, the XGLM-7.5B model “was trained on 256
A100 GPUs for about 3 weeks” (Lin et al., 2022).

models often uses a subset of experts (see §3.3),
keeping inference costs manageable.

c-BTM (Gururangan et al., 2023) generalizes the
above approach with cluster-based representations
of domains. Across multiple corpora, they show
that (1) the optimal number of experts increases
with data and compute and (2) a set of small expert
models performs similarly to equivalently sized
dense models at vastly reduced FLOP budgets.

Our work extends these studies to the multilin-
gual setting, in which experts are specialized to
different languages instead of (primarily) English-
language domains. In the multilingual setting, we
can also use typological structure to specialize ex-
perts, which we show provides additional benefits
over automatic data clustering. We also demon-
strate that training along the hierarchy of language
families in multiple rounds yields further perfor-
mance benefits.

3 Cross-lingual Expert Language Models

Multilingual language models are jointly trained
on many different languages (e.g., Lin et al., 2022),
despite the well-documented curse of multilingual-
ity that comes from the competition between lan-
guages for fixed model capacity (Conneau et al.,
2020; Wang et al., 2020). We propose Cross-
lingual Expert Language Models, or X-ELMs,
to address this performance disparity (Figure 1).
These experts are trained with x-BTM, an exten-
sion of the Branch-Train-Merge (BTM) pretraining
paradigm (Li et al., 2022; Gururangan et al., 2023):
we asynchronously train many expert LMs on sub-



sets of a multilingual corpus in order to specialize
them to different sub-distributions of the multilin-
gual space and then merge the experts to perform
inference. We hypothesize that this training scheme
will alleviate the curse of multilinguality on individ-
ual languages while maintaining the cross-lingual
properties of dense multilingual LMs.

3.1 x-BTM: Sparse Multilingual Training

This section overviews our algorithm for sparse
training of multilingual experts.

Step 0: Multilingual Data Allocation As a pre-
processing step, we partition the multilingual cor-
pus into k clusters to train each X-ELM. We con-
sider learning TF-IDF clusters as well as a new
clustering method that groups documents by lan-
guage identity and linguistic typology (§3.2).

Step 1: Branch A preliminary stage of shared,
dense pretraining is important for ensembling ex-
pert language models (Li et al., 2022). There-
fore, the first step of BTM is to initialize (branch)
each expert with the parameters from a partially
trained model. For this work, we initialize our
X-ELMs with an existing multilingual pretrained
model, XGLM (Lin et al., 2022).

Step 2: Train After initialization, we assign each
expert a data cluster and train for a fixed number of
steps with an autoregressive LM objective. Expert
training is independent, with no shared parameters
between models.

Step 3: Merge We collect the k X-ELMs into
a set and perform inference with them. We
consider several methods of inference and expert
ensembling in §3.3.

Steps 1 – 3 describe a single round of x-BTM train-
ing. However, we can continue to update the X-
ELM set by branching—initializing a new group of
experts—from existing models in the ensemble and
performing more rounds of x-BTM via the method
we propose in §4. This allows us to further improve
X-ELM by training and adding new experts.

3.2 Data Allocation Methods

How we assign data to experts is a key component
of training X-ELM, and it is a particularly crucial
choice as the data becomes more diverse (i.e., span-
ning many languages). We consider two methods
of data allocation when training our X-ELMs:

Balanced TF-IDF Clustering We partition the
multilingual corpus automatically into k compo-
nents with k-means clustering. First, we encode
each document into a word-level TF-IDF represen-
tation2; we then perform balanced k-means clus-
tering on these representations to obtain approxi-
mately balanced subsets of the data on which to
train each X-ELM. Further details on the balanced
k-means clustering method can be found in Guru-
rangan et al. (2023). This allocation method uses
no language information outside of what is inherent
in the text (e.g., script, vocabulary).

Figure 2: Heirachical clustering of languages used to
train our X-ELM ensembles.

Linguistic Typology Clustering We also con-
sider segmenting the corpus by language identity.3

Rather than balancing the amount of data allocated
to each cluster in this setting, we instead keep the
number of languages per cluster fixed. Specifically,
we learn a balanced hierarchical clustering of the
languages (Figure 2). We build this hierarchy us-
ing the language similarity metrics in LANG2VEC

(Littell et al., 2017), which represents languages
based on linguistic features in resources such as
WALS4 and estimates language similarity with dis-
tance in this feature space. We first initialize each
cluster with a single language; at each step, we
merge each cluster with exactly one other based
on the minimum distances between the cluster cen-
troids. We then group languages according to the
resulting hierarchy and the desired number of ex-
perts. When the number of languages equals the
number of experts, typological clustering results
in monolingual training, where every language is
assigned a separate expert.

Comparing the Clustering Techniques Figure
3 shows the difference in language distributions

2Data tokenization is independent of the downstream
model. Here, we use the sklearn text-vectorizer tokenizer.

3This requires knowledge of the language of each docu-
ment. We use the language tags provided with mC4.

4World Atlas of Language Structures, https://wals.
info/

https://wals.info/
https://wals.info/
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Figure 3: Percentage of language data assigned to dif-
ferent experts with TF-IDF (top row) and Typ. (bottom
row) clustering. For Typ. clustering, each language is
assigned entirely to a single expert.

between the TF-IDF and Linguistic Typology clus-
ters. While TF-IDF allows language data to spread
across experts, we find that, in practice, the dis-
tributions remain relatively sparse. The main ex-
ception is at k = 16, when the highest-resourced
languages in the data (e.g., English or Russian)
are split across clusters due to the constraint that
balances the amount of data per cluster.

3.3 Inference with X-ELMs

We evaluate a number of different methods for per-
forming inference with X-ELMs:

Top-1 Expert This method performs inference
with a single expert chosen prior to evaluation;
therefore, it incurs the same inference cost as the
dense baselines. When evaluating the Typology
experts on a particular language ℓ, we choose the
expert that included ℓ in the set of languages on
which they continued pretraining. Similarly, when
evaluating TF-IDF, we choose the X-ELM trained
on the highest percentage of ℓ’s data.

Ensembling TF-IDF Experts We also consider
ensembling TF-IDF experts by adapting the c-BTM
ensemble routing method. Here, we calculate en-
sembling alphas, or weights, over these experts for
each evaluation step based on the proceeding con-
text’s TF-IDF distance from the experts’ k-means
centroids. These weights are then used to ensemble
the output probabilities from each expert.

More specifically, given a probability from
each expert LM pe(xt|x<t) and the correspond-
ing ensemble weight αe = p(e|x<t) ∝
exp(−dist(x<t, ce)

2/T ), the probability of the en-
semble pE(xt|x<t) =

∑
e∈E αe ·pe(xt|x<t). Here,

dist(x<t, ce) is obtained by embedding x<t with
the learned TF-IDF vectorizer and calculating the
Euclidean distance from ce (the centroid over the
data representations allocated to expert e), and T is
a temperature parameter over the ensemble weight
distribution. Further details and motivation for this
setting are provided in Gururangan et al. (2023).

Ensembling X-ELM outputs increases the cost of
inference relative to the dense model or top-1 infer-
ence. However, it can potentially better fit different
subsets of data in a diverse evaluation set. We also
do not assume we know the identity of each exam-
ple when ensembling, which makes this approach
more flexible than the top-1 setting. In most cases,
we ensemble all k experts; however, we can also re-
duce computational costs by sparsifying the ensem-
ble weights and only activating the m (< k) experts
that most contribute to an example: pE(xt|x<t) =∑

e∈E αe · pe(xt|x<t) : αe ∈ top-m(αE). Table
8 presents the performance tradeoff with sparser
TF-IDF ensembles.

4 Hierarchical Multi-Round Training

We previously described a single round of training
for X-ELM (§3.1). However, BTM can also be
used repeatedly to train new experts seeded with
those learned in a prior round. The multilingual
setting provides a natural extension of multi-round
training that leverages typological structure when
initializing new experts.

We propose Hierarchical Multi-Round (HMR)
pretraining (Figure 1), which uses the learned ty-
pological tree structure from Linguistic Typology
clustering to iteratively train more specific X-ELMs.
Specifically, given an expert model x trained on a
cluster of languages L, we initialize a new set of
experts X ′ = x′1, x

′
2, ..., x

′
n with the parent expert

x. Each new expert in X ′ is then further trained on
a different sub-cluster ℓ′ ⊂ L.

HMR pretraining gives multiple benefits over
single-round BTM. In particular, HMR training
saves compute and more easily adapts our X-ELMs
to new settings. A specific application of this is
adding new languages to the model: while updat-
ing dense multilingual LMs with new languages
is difficult and can lead to catastrophic forgetting
of existing languages (Winata et al., 2023), hierar-
chically training an expert on a new language adds
it to the X-ELM set without altering the existing
information in other experts. We further consider
this use case for HMR training in §6.3.



Figure 4: Average and language-specific (EN and SW) perplexities across expert counts (k) when clustering with
TF-IDFtop1 (square) and Linguistic Typology (triangle). The best k for each setting is marked with a star.

5 Experimental Design

We present a series of experiments to test whether
the X-ELM pretraining paradigm remedies the de-
crease in individual language performance ob-
served in dense multilingual models.

5.1 Pretraining Data and Languages

We train our X-ELMs on mC4, an open-source, mul-
tilingual pretraining corpus derived from Common-
Crawl (Xue et al., 2021).5 mC4 provides language
tags for each document in the corpus, which were
automatically assigned with cld36 when the dataset
was constructed; we use these language tags dur-
ing typological clustering (§3.2). We focus our
experiments on the 16 highest-resourced languages
out of the 30 languages on which the seed LM,
XGLM-1.7B, was trained. For languages with sig-
nificantly more data than the others (e.g., English),
we subsample their data to the first 1,024 shards.
Appendix Table 5 gives the languages and data
quantities in our pretraining corpus.

5.2 Pretraining Settings

Each expert in the X-ELM experiments is a 1.7B
parameter model with the same architecture as the
1.7B XGLM transformer model (Lin et al., 2022),
and they are initialized with XGLM’s weights in
the initial round of BTM training. Unless otherwise
stated, we keep the training parameters from the
original XGLM training procedure; further details
are given in Appendix A.1.

We train the experts for a fixed number of train-
ing steps. The exact parameters and resources used
for each X-ELM experiment are reported in Table
4: in every setting, we control for the number of

5While one could also continue pretraining with the same
corpus that the seed LM was trained on, the pretraining data
for XGLM is not publicly available.

6https://github.com/google/cld3

tokens seen during training. This ensures that all ex-
perts in a setting see the same amount of data (and
undergo the same number of training updates) and
that experiments across different expert set sizes
but under the same training budget are comparable.
For most experiments, we use a shared budget of
10.5B tokens; where indicated, we increase this to
21.0B tokens to test the effect of further training.

5.3 Perplexity Evaluation

To evaluate the language modeling performance of
the X-ELMs, we separately calculate the perplex-
ity on the mC4 validation sets of each pretraining
language. For languages with larger evaluation
sets, we estimate performance on the first 5,000
validation examples. This perplexity metric is not
comparable across languages, as they have differ-
ent validation sets.

6 Language Modeling Experiments

We now test the effectiveness of sparse language
modeling in the multilingual setting. First, we
determine the optimal number of clusters for our
given compute budget and dataset (§6.1). We then
demonstrate that X-ELMs outperform comparable
dense models on seen languages (§6.2) and more
effectively adapt to new, unseen languages (§6.3).
Finally, we examine the effect of sparse training on
forgetting previously-held knowledge of languages
in specific X-ELM experts (§6.4).

6.1 Choosing the Number of X-ELMs

We first consider which choice of k clusters
gives the best multilingual language modeling
performance. Figure 4 compares the choice of
k = 1, 4, 8, 16 X-ELMs when trained on 10.5B to-
kens.7 k = 8 is the best-performing setting on 75%

7The k = 16 setting is equivalent to training monolingual
experts for every language. Full results are in Table 1 for

https://github.com/google/cld3


Lang. 10.5B Training Tokens 21.0B Training Tokens
XGLM Dense TF-IDFtop1 TF-IDFens

∗ Typ. Dense TF-IDFtop1 TF-IDFens
∗ Typ.

AR 16.85 15.29 14.51 14.56 14.66 14.97 14.00 14.05 14.16
BG 11.31 10.44 10.39 10.39 10.25 10.34 10.27 10.26 10.09
DE 15.53 14.02 13.41 13.50 13.42 13.72 12.95 13.05 12.97
EL 10.44 9.40 9.20 9.18 9.17 9.24 9.03 9.00 8.98
EN 14.37 12.88 12.93 12.73 12.78 12.69 12.68 12.47 12.55
ES 16.02 14.13 13.92 13.76 13.99 13.87 13.54 13.37 13.69
FR 13.12 11.78 11.19 11.28 11.29 11.54 10.79 10.88 10.91
HI 18.28 14.28 14.86 14.19 11.25 13.68 14.36 13.62 10.52
JA 14.57 12.31 11.95 11.95 11.49 11.79 11.36 11.37 10.88
KO 8.82 7.79 7.72 7.67 7.67 7.67 7.61 7.53 7.54
RU 13.43 12.52 12.14 12.21 12.08 12.33 11.83 11.90 11.74
SW 19.85 18.70 19.10 18.76 18.32 18.61 19.04 18.67 18.07
TR 17.81 15.34 14.13 14.28 13.80 14.88 13.41 13.58 13.03
UR 14.38 13.45 13.40 13.57 12.60 13.38 13.26 13.52 12.20
VI 13.07 11.39 11.00 10.86 10.22 11.09 10.56 10.42 9.69
ZH 17.91 13.74 13.28 13.53 11.98 13.12 12.61 12.87 11.24

Avg. 14.74 12.97 12.70 12.60 12.19 12.68 12.33 12.28 11.77

Table 1: Per-language and average perplexity results for the k = 8 X-ELM experiments (original XGLM and k = 1
dense model included for comparison). Lower numbers are better. The best setting for each language is bolded per
compute budget. ∗TF-IDF ensemble uses more parameters for inference than other evaluations; see Table 8 for the
effect of sparsifying these ensembles on perplexity.

of languages when clustering with TF-IDF and for
15 of the 16 pretraining languages when clustering
by language similarity. Furthermore, typological
clustering consistently outperforms TF-IDF.

These experiments indicate that, for the budget
we evaluate, the best overall X-ELM setting is
bilingual models (k=8) clustered by language
similarity. This result is surprising, as it is intuitive
to assume that simply continuing to pretrain each
expert on a single language (i.e., the k = 16 set-
ting) would lead to better perplexity. We find that
one language, Swahili, does benefit from the mono-
lingual k = 16 setting—possibly because Swahili
is paired with a distant language (Vietnamese) by
the typological clustering process. However, per-
plexity is higher in the k = 16 setting for all other
languages, and in some cases even underperforms
the dense (k = 1) model.

6.2 Perplexity Results on Seen Languages

We now examine the performance of X-ELM in the
best setting (k = 8) for the sixteen languages seen
during BTM training on computational budgets of
10.5B and 21.0B tokens. Table 1 presents the per-
plexities of the TF-IDF clustered X-ELMs as well
as the typologically (Typ.) clustered X-ELMs. As
baselines, we compare against the original XGLM-
1.7B model and a dense model trained on both
computational budgets. We find that the best set-

k = 8 and Appendix C for k = 4 and k = 16.

ting, k = 8 with typologically clustered experts,
improves by 2.97 and 1.20 on average over the
seed and dense baseline models and has individual
language gains of up to 7.77 and 3.76 over these
models, respectively.

Expert language models outperform dense con-
tinued training For most languages (10 of
16), typologically clustered experts are the best-
performing setting. For some high-resource lan-
guages (EN and ES), ensembling the TF-IDF ex-
perts works better than a single expert. However,
this inference setting requires more parameters, as
it uses all X-ELMs instead of just the single best
expert per language. Furthermore, training X-ELMs
for longer unsurprisingly outperforms lower com-
pute settings. All of our experimental settings
outperform the seed XGLM model; similarly, the
experiments with the 21.0B token compute bud-
get perform better than the respective experiment
trained with 10.5B tokens.

X-ELMs improve language modeling on all lan-
guages We also show that multilingual language
modeling with X-ELMs does not disproportionally
benefit languages with more pretraining data (Fig-
ure 5). Instead, perplexity improvements over
both the seed LM and the dense LM baseline
may slightly favor low-resource languages (ρ =
−0.19,−0.26, respectively).



Figure 5: Comparison of PPL improvements per lan-
guage over XGLM-1.7B (circle) and dense baseline
(triangle) against the training data quantity (for typolog-
ically clustered experts).

6.3 Unseen Languages and Modeling New
Languages with X-ELM

We also examine how well X-ELM performs on
held-out languages as well as adapts to new lan-
guages. Specifically, we consider both zero-shot
evaluation and further training of X-ELM on four
languages not included in the original XGLM seed
model: Azerbaijani (AZ), Hebrew (HE), Polish
(PL), and Swedish (SV).8

Unseen Language Evaluation We evaluate the
existing dense baseline and ensembled TF-IDF
clustered experts from the 21B token compute bud-
get (§6.2) to test whether continued pretraining
with x-BTM improves performance on unseen lan-
guages (X-ELM Training). We also compare these
results to XGLM. We note these models never
trained on the target languages.

Table 2 presents the unseen target language
perplexities in the XGLM and X-ELM Training
columns. We find that the original XGLM model
performs poorly on the new languages, particularly
those less related to XGLM’s highest-resourced
ones (i.e., AZ and HE). While these perplexities
remain high in the dense model and TF-IDF ensem-
bles, training (on other languages) with x-BTM
provides some performance improvements over the
seed model.

Adapting X-ELM to new languages We now
consider how well Hierarchical Multi-Round train-
ing (HMR) works for language adaptive pretrain-

8Data for these languages is also obtained from mC4, with
the same preprocessing as other languages in our experiments.

Lang X-ELM Training LAPT
XGLM Dense TF-IDF∗

ens Dense HMR
Target

AZ 1467.45 739.58 722.10 65.73 32.74
HE 1817.07 685.02 815.96 53.08 26.21
PL 211.76 160.70 178.63 17.71 16.60
SV 105.27 92.55 99.24 27.37 26.16

Donor
TR 17.81 15.34 14.28 14.69 12.72
AR 16.85 15.29 14.56 14.80 13.52
RU 13.43 12.52 12.21 12.28 12.02
EN 14.37 12.88 12.73 12.65 12.63

Table 2: Perplexity results on unseen target languages
and their respective donor languages. Donor language
performance is only bolded if these results outperform
all other X-ELM settings in that language (Table 1).

ing (LAPT, Chau et al., 2020), which incorporates
new target languages into the continued pretrain-
ing process. Here, we group each target language
with a higher-resource donor language already in
our pretraining set; these are assigned with the lan-
guage similarity metric used for typological cluster-
ing. We seed each new language’s expert with an
expert specialized to that language’s donor; the new
expert is then trained on the donor/target language
pair. For HMR inference, we evaluate perplexity
with the expert trained on that target language.9

We compare HMR against jointly continuing
training on all four new languages and their respec-
tive donors in a single model (Dense). Each setting
builds on models from the 10.5B compute bud-
get: we continue training on the dense baseline for
dense LAPT and branch from the donor languages’
k=8 typological experts for HMR training.

All of the LAPT settings provide considerable
improvements on the new target languages over
the unseen language experiments (Table 2, LAPT
columns). The HMR setting outperforms contin-
ued dense training on every new language. Fur-
thermore, HMR training removes the risk of catas-
trophic forgetting (Yogatama et al., 2019) in other
LAPT schemes, as this process adds new experts
to X-ELM rather than changing existing ones.

We also find that this setting provides perfor-
mance gains on two donor languages over the ex-
periments in §6.2. This is likely due to further
training with more closely related languages for
these languages (e.g., performing training on Ara-
bic with Hebrew rather than French), consequently
providing a more informative training signal for

9We also evaluate the donor languages to see what benefit,
if any, they receive from the adaptation process.



Figure 6: Heatmap comparing individual X-ELM per-
plexities to the seed LM with TF-IDF (left) and Typ.
(right) clustering. Positive scores indicate that the ex-
pert forgot that language. For Typ. clusters, languages
that the model was explicitly trained on are grayed out.

the higher-resource donor language as well.

6.4 X-ELM Forgetting

The preceding sections evaluate X-ELMs as an en-
semble of models by dynamically choosing the best
expert for a given evaluation setting or ensembling
the experts’ outputs. However, each expert is ini-
tialized with a model trained on all the languages
we consider. This prompts the question: how much
do individual experts forget10 about the languages
they are not specialized to?

Forgetting occurs as X-ELMs become more spe-
cialized. We compare the perplexity of each ex-
pert model on all pretraining languages to that of
the seed model, XGLM-1.7B (Figure 6 for k = 8;
other settings given in Appendix C). Across the
considered values of k, we see less forgetting in the
X-ELMs trained on TF-IDF clusters than in those
clustered typologically. For the k = 8 expert set-
ting, the TF-IDF experts only forget on 47.7% of
settings, and when forgetting occurs, the perplexity
increase over the baseline is 3.10 on average. For
typologically clustered experts, these measures are
83.6% and 3.14, respectively; we observe similar
trends for the k = 4 and k = 16 X-ELMs. This
implies that though in some cases only small quan-
tities of data are shared across TF-IDF clusters,
these data mitigate forgetting over the hard cluster
assignments made by typological clustering.

X-ELMs are more likely to forget certain lan-
guages. For example, English is rarely forgotten,
with only 25% of experts performing worse than
the baseline. In comparison, 94.6% of experts per-
form worse on Urdu than XGLM. One potential

10We consider an expert to have forgetten information about
a language if its perplexity on that language increases.

Figure 7: Per-expert deltas compared to the origi-
nal XGLM-1.7B of every pretraining language plotted
against the language’s frequency in the original XGLM
pretraining corpus (ρ = −0.33, p << 0.001).

cause of this discrepancy is the frequency with
which the language was seen during seed training:
languages that are more common in the XGLM pre-
training corpus see fewer cases of forgetting and
have smaller perplexity increases when it does oc-
cur (Figure 7). Another likely factor is inaccurate
language classification in the BTM training data,
which is a common issue when training language
models on specific languages (Blevins and Zettle-
moyer, 2022); this could lead to related, higher-
resourced languages contaminating the datasets for
lower-resourced ones (Kreutzer et al., 2022).

7 In-Context Learning Experiments

We also measure whether the perplexity improve-
ments from X-ELMs correspond to better perfor-
mance on downstream tasks. We test the perfor-
mance of our X-ELMs on three tasks through an
in-context learning (ICL) framework, showing that
the X-ELM language modeling gains do translate to
ICL improvements over the baseline models.

7.1 Experimental Setup

We test the in-context learning abilities of X-ELM

on three downstream tasks:
XNLI (Conneau et al., 2018) is a multilingual

natural language inference benchmark covering 14
of our 16 pretraining languages (excluding JA and
KO). Since there are no gold training examples for
XNLI, we use the test set for evaulation and sample
demonstrations from the validation set.

XStoryCloze (Lin et al., 2022) is a manu-
ally translated benchmark extending StoryCloze
(Mostafazadeh et al., 2016) to other languages.



Model XNLI XStoryCloze PAWS-X
Acc. Win Rate Acc. Win Rate Acc. Win Rate

Zero-shot

XGLM (1.7B) 44.88 28.6% 57.76 28.6% 48.54 14.3%
Dense 44.31 7.1% 56.10 0.0% 48.44 28.6%
Typ. (TRG) 44.17 7.1% 57.79 28.6% 49.86 42.9%
TF-IDF (Top-1) 43.77 14.3% 57.80 28.6% 50.04 28.6%
TF-IDF (Ens.) 45.10 42.9% 57.46 14.3% 49.93 0.0%

Few-shot

XGLM (1.7B) 42.34 28.6% 53.21 0.0% 54.52 0.0%
Dense 41.70 0.0% 55.00 0.0% 54.81 14.3%
Typ. (TRG) 42.15 †14.3% 54.62 †71.4% 55.39 †28.6%
Typ. (EN) 42.43 †7.1% 55.54 †28.6% 55.13 14.3%
TF-IDF (Top-1) 42.55 21.4% 55.03 †14.3% 55.50 †42.9%
TF-IDF (Ens.) 42.93 35.7% 54.72 28.6% 54.57 14.3%

Table 3: Average performance and the percentage of languages where this setting outperforms the others (Win Rate)
on the overlap of task evaluation languages and the X-ELM target languages. The few-shot setting provides k=8
English demonstrations to the model and averages performance across five runs. †indicates (best) performance ties
between two evaluation settings on a language.

This is a story-completion task wherein the model
identifies the correct final sentence of a short story.
This dataset covers seven of our pretraining lan-
guages and four other low-resource languages.

PAWS-X (Yang et al., 2019) is a binary classifi-
cation task that requires the model to determine
whether a pair of sentences are paraphrases.
This benchmark covers seven of our pretraining
languages, including two (JA and KO) not covered
by the other ICL benchmarks.

We compare the performance of X-ELM against
dense baselines in both zero- and few-shot learn-
ing settings. For all benchmarks, we evaluate on
1,000 random examples and perform five runs on
different demonstration sets for few-shot settings.
Unless otherwise stated, we evaluate performance
on the development set and sample demonstrations
from the training set; further details about the ICL
evaluation protocol are given in Appendix A.2.

7.2 Results

We evaluate our best X-ELM setting by perplexity—
k=8 experts trained on the larger compute budget
of 21B training tokens—on the downstream tasks.
Table 3 summarizes the results of these evaluations
on the languages covered by the X-ELM models;
individual language results are given in Appendix
C. The X-ELM models outperform both the seed
model and the compute-matched dense baseline
across the three tasks and in both the zero- and
few-shot evaluation settings.

Furthermore, though X-ELM improves over
the seed model, the dense model underperforms
XGLM. This may be due to using different data

from the original XGLM pretraining; data quality
issues have been previously documented for mC4
(Kreutzer et al., 2022; Chung et al., 2023). We also
note that XNLI and XStoryCloze few-shot perfor-
mance is consistently lower than in the zero-shot
setting; this is a recurring issue in multilingual ICL
also observed in the base model (Lin et al., 2022).

8 Related Work

8.1 Multilingual Pretraining

Many variations and improvements on dense mul-
tilingual pretraining have been proposed since the
introduction of multilingual BERT (Devlin et al.,
2019): by changing the architecture and scaling the
model size up (Goyal et al., 2021; Lin et al., 2022),
combining additional objectives to the main LM
objective (Conneau and Lample, 2019; Chi et al.,
2022; Reid and Artetxe, 2022), careful language
and data curation (Scao et al., 2022; Ogunremi
et al., 2023), and scaling and balancing the vocab-
ulary across the different languages (Liang et al.,
2023). Most relevant to our work is Pfeiffer et al.
(2022), which proposes a new modular model archi-
tecture, X-MOD, that contains language-specific
modules. However, many of the limitations of
dense modeling persist in this architecture since
the model and modules are jointly trained.

An issue common to most methods for multilin-
gual pretraining is the curse of multilinguality (Con-
neau et al., 2020). Wu and Dredze (2020) demon-
strate that multilingual training leads to lower per-
formance on low-resource languages than higher-
resourced ones. Blevins et al. (2022) find that
multilingual models forget information previously



learned during training, which they postulate is
due to this phenomenon; Wang et al. (2020) simi-
larly suggest that this effect occurs due to training
dynamics. More recently, Chang et al. (2023) pre-
sented a controlled study of the factors causing this
curse that corroborates limited model capacity as
the underlying cause. A primary motivation of this
work is to limit the effect of this curse while main-
taining the other benefits of multilingual modeling.

8.2 Adapting Multilingual Models

Another common thread of multilingual modeling
research focuses on adapting an existing model to
new languages. Initially, these methods continued
pretraining these models with the new languages
incorporated into the training regime, such as
language-adaptive pretraining (LAPT; Chau et al.,
2020). Other work proposed the use of adapters to
update the model to new languages (Pfeiffer et al.,
2020); notably, Faisal and Anastasopoulos (2022)
used similar linguistic motivations to our typolog-
ical clustering to group languages into adapters.
However, follow-up work found that continued pre-
training outperformed adapter methods for new
language adaptation (Ebrahimi and Kann, 2021).

8.3 Sparse Models for NLP

Sparsely activated language models (Evci et al.,
2020; Mostafa and Wang, 2019; Dettmers and
Zettlemoyer, 2019) route inputs through a subset
of the total model parameters. Our work builds
most directly on the Branch-Train-Merge (Li et al.,
2022; Gururangan et al., 2023) algorithm, which re-
sults in full-model experts trained to specialize on
domains of data defined by metadata or a learned
clustering. This design expands both on the in-
dependent feed-forward network experts found in
early Mixture-of-Experts (MoE) models (Jacobs
et al., 1991) and on DEMix layers (Gururangan
et al., 2022), which routes sequences to per-layer
feed-forward experts based on metadata.

Other MoE models have recently been applied to
multilingual settings. Pfeiffer et al. (2022) develop
a multilingual expert model with language-specific
routing, and Kudugunta et al. (2021) develop a ma-
chine translation model with routing determined
by the source-target language pair or the target lan-
guage. Similarly to BTM, Jang et al. (2023) trains
experts specialized to different tasks, including five
machine-translation language pairs, which can be
merged with other task experts.

9 Conclusion

This work presents an approach to mitigate the
curse of multilinguality by extending sparse lan-
guage modeling to the multilingual setting with
X-ELMs (cross-lingual expert language models).
We find that X-ELMs achieve better perplexity over
standard, dense language models trained with the
same compute budget; these experts can also be
efficiently adapted to new languages without the
risk of catastrophic forgetting. X-ELMs also present
other benefits over dense models for multilingual
modeling, such as not disproportionally benefitting
high-resource languages over lower-resourced ones.
Finally, we show that these language modeling im-
provements transfer to downstream tasks.

While our experiments show that X-ELM out-
performs dense LMs, we foresee many avenues
of future work to further tailor sparse modeling to
multilinguality. These include better methods for
data allocation—such as clustering methods that
leverage cross-lingual signal— and algorithmic im-
provements to better allocate compute and more
effectively ensemble models at inference. By prov-
ing the efficacy of sparse language modeling in the
multilingual setting, we hope to inspire future work
in this vein that fairly models every language while
leveraging the potential of cross-lingual learning.

Limitations

One limitation of this work is that we focus on
examining the effect of training X-ELMs with x-
BTM in a limited number of settings, training lan-
guages, and data sources fixed; this is due to limited
computational resources. Therefore, the proposed
methods should be verified in other settings. In par-
ticular, we hope to examine how X-ELM performs
at scale when using larger experts, more languages,
and larger training budgets.

We also note the limited nature of our down-
stream evaluations, which is due to (1) the limited
number of multilingual benchmarks available and
(2) our requirement that evaluation benchmarks
overlap with (most of) our 16 pretraining languages.
Furthermore, since we compare against the seed
model, we focus on XGLM’s original evaluation
tasks and the prompting settings developed for this
baseline (rather than developing our own that may
be biased towards the X-ELM models).

Finally, training X-ELM rather than a single
dense model increases some computational costs,
similar to other BTM methods. The primary in-



crease is in storage, as each expert’s weights need
to be stored separately. In some cases, the inference
cost of X-ELM can be higher than the best model
(e.g., when using an ensemble of experts); however,
we propose several inference methods that only re-
quire loading a single model and demonstrate that
you can sparsify the TF-IDF ensemble and achieve
similar perplexities (Appendix Table 8).
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A Additional Experimental Details

A.1 Pretraining
Table 5 summarizes the languages we use, as well
as their frequencies in the original XGLM pretrain-
ing dataset and in our sub-sampled mC4 corpus.

Table 4 presents the compute allocated to each
expert and setting at different compute budgets of
the X-ELM experiments. The per-model instance

# Tokens k # GPUs # updates grad acc.

10.5 B

1 8 20,000 32
4 4 20,000 16
8 4 20,000 8

16 2 20,000 8

21.0 B

1 8 40,000 32
4 4 40,000 16
8 4 40,000 8

16 2 40,000 8

Table 4: Overview of the total compute budget and
resources used for different X-ELM experiments. k is
the number of experts, # GPUs indicates the number of
GPUs used to train each expert, and grad acc. gives the
number of gradient accumulation steps used.

Language mC4† Size (%) XGLM Size
AR (Arabic) 243.14 (4.1%) 64.34
BG (Bulgarian) 109.3 (1.9%) 61.10
DE (German) 615.59 (10.4%) 369.30
EL (Greek) 193.63 (3.3%) 180.37
EN (English) 877.43 (14.8%) 3,324.45
ES (Spanish) 723.17 (12.2%) 363.83
FR (French) 506.74 (8.6%) 303.76
HI (Hindi) 125.44 (2.1%) 26.63
JA (Japanese) 764.71 (12.9%) 293.39
KO (Korean) 91.29 (1.5%) 79.08
RU (Russian) 957.02 (16.2%) 1,007.38
SW (Swahili) 3.06 (0.05%) 3.19
TR (Turkish) 248.07 (4.2%) 51.51
UR (Urdu) 10.15 (0.2%) 7.77
VI (Vietnamese) 296.65 (5.0%) 50.45
ZH (Chinese) 143.68 (2.4%) 485.32

AZ (Azerbaijani) 15.23 (–) –
HE (Hebrew) 67.14 (–) –
PL (Polish) 393.85 (–) –
SV (Swedish) 154.54 (–) –

Table 5: The frequencies and relative percentages of dif-
ferent languages in our training corpus (†a subsampled
version of mC4) and in the XGLM pretraining corpus,
CC100-XL (as reported in Lin et al. (2022)). Sizes of
data are reported in gigabytes (GiB). EN, ES, FR, and
RU are downsampled to the first 1,024 mc4 shards for
those languages.

batch size (bsz) for all experiments is 2, and each
training example had a sequence length (seq. len)
of 2048. The total token budget (# Tokens) is the
product of (k, # GPUs, # updates, grad acc., bsz,
seq. len), normalized by the number of GPUs used
for model parallelism (2).

The experts are trained with a linear decay learn-
ing rate schedule; we use a maximum learning rate
of 1.5e− 4 after performing preliminary learning
rate sweeps.

A.2 In-Context Learning

We reimplement the evaluation protocol from Lin
et al. (2022), where the model scores multiple ver-
sions of every example (with the different possible
labels filled in), and the label of the highest-scoring
version is considered as the model’s prediction. We
use the English prompt formats and evaluation pro-
tocols developed for the seed LM of our experts,
XGLM, for the downstream tasks of XNLI, XSto-
ryCloze, and PAWS-X. The prompt templates we
use are reproduced in Table 6.

In the few-shot experiments, we perform five
evaluation runs with different demonstration sam-
ples and reported the average performance. All
few-shot experiments are performed with eight ran-
dom demonstrations. As we are testing the cross-
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Dataset Prompt Labels
XNLI {Sentence 1}, right? [Mask], {Sentence 2} Entailment: Yes | Neural: Also | Contradiction: No

XStoryCloze {Context} [Mask] Identity
PAWS-X {Sentence 1}, right? [Mask], {Sentence 2} True: Yes | False: No

Table 6: Prompts used for the ICL experiments in §7; the [MASK] is filled with one of the label forms given in the
last column. For XStoryCloze, {Context} refers to the format {Sent. 1} {Sent. 2} {Sent. 3} {Sent. 4},
and “Identity” refers to the text of one of the answers given for that example.

lingual abilities of X-ELM, these demonstrations
are in English for every target language.

B Additional X-ELM Analysis

B.1 Hierachical Multi-Round (HMR)
Training for Seen Languages

The final column of Table 7 evaluates the effec-
tiveness of HMR training for continued training of
X-ELMs. Here, we select the k = 4 typologically
clustered expert from the 10.5B token compute set-
ting that covers the pair of languages as the seed
model for each k = 8 setting. We then adapt on
the k = 8 Typ. setting for another 10.5B tokens.

Our results find that this adaptation scheme un-
derperforms the Typ. experts trained from the seed
model for 21B tokens, indicating that it is more
effective to train X-ELMs in a single run rather than
dividing the compute budget across two rounds of
training. We hypothesize that this negative result is
due to the XGLM seed model, which is a fully pre-
trained model, already learning adequate transfer
across language families; we leave further investi-
gation of this to future work. However, this finding
is in contrast with §6.3, which shows that the HMR
scheme is very effective for adapting experts to
unseen languages.

B.2 Sparse TF-IDF Ensembling
In §6, we compare ensembling TF-IDF experts in
an X-ELM set against choosing a single TF-IDF
expert for inference based on the amount of in-
language data seen by that expert during training.
In the cases of m=2,4, this approach sparsifies
the ensemble by dynamically selecting the top m
experts based on their current ensemble weights.
Here, we additionally consider how sparsifying the
TF-IDF ensemble holds up against these other set-
tings (Table 8). We find that for seen languages,
reducing the number of experts active to just m=2
usually gives very similar performance to the full
ensemble (m=8). However, this is not true in the
case of unseen languages, where the m=8 setting
consistently outperforms sparser ensembles.

C Full Experimental Results

Table 7 presents the full perplexity results for the
k = 4 and k = 16 X-ELM experiments, trained on
a 10.5B token compute budget. We find that both
choices of k underperform the k = 8 setting.

Figure 8 reports the per-expert forgetting relative
to the baseline model (XGLM-1.7B) in the k = 4
and k = 16 settings. On average, the k = 4 TF-
IDF experts experience forgetting in only 18.8%
of cases with an average perplexity increase of
1.24 when forgetting occurs; the typology experts
forget 78.1% of the time with an average perplexity
increase of 1.34. For the k = 16 setting, these
statistics are 60.9% and 0.9 for the TF-IDF clusters
and 89.4% and 1.24 for the typology clusters.

Downstream Evaluation on Individual Lan-
guages Tables 9, 10, and 11 detail the per-
language results for XNLI, XStoryCloze, and
PAWS-X, respectively.



Lang. k=4 Experts k=16 Experts k=8
XGLM Dense TF-IDFtop1 TF-IDFens

∗ Typ. TF-IDFtop1 TF-IDFens
∗ Typ. HMR

AR 16.85 15.29 14.99 15.03 15.00 15.60 15.67 15.40 14.36
BG 11.31 10.44 10.39 10.39 10.42 11.10 10.70 10.31 10.18
DE 15.53 14.02 13.85 13.89 13.71 14.71 14.43 14.5 12.13
EL 10.44 9.40 9.36 9.33 9.28 9.72 9.64 9.41 9.05
EN 14.37 12.88 12.64 12.71 12.78 13.60 13.23 13.27 12.60
ES 16.02 14.13 13.93 13.96 14.06 14.83 14.58 14.59 13.75
FR 13.12 11.78 11.62 11.65 11.55 12.38 12.13 12.15 11.05
HI 18.28 14.28 14.22 14.21 12.64 16.11 15.67 13.86 10.98
JA 14.57 12.31 12.23 12.12 11.73 13.39 13.14 13.18 11.01
KO 8.82 7.78 7.81 7.77 7.70 8.14 8.09 7.75 7.56
RU 13.43 12.52 12.30 12.33 12.46 12.96 12.76 12.82 11.95
SW 19.85 18.70 18.61 18.62 18.19 19.38 19.13 16.43 18.30
TR 17.81 15.34 14.85 14.96 14.81 15.67 15.78 15.52 13.47
UR 14.38 13.45 13.56 13.73 13.18 13.88 13.87 12.65 12.46
VI 13.07 11.39 11.43 11.21 10.32 11.85 11.65 11.59 10.21
ZH 17.91 13.74 13.38 13.70 13.11 14.65 14.95 13.58 11.66

Avg. 14.74 12.97 12.82 12.85 12.56 13.62 13.46 12.94 11.98

Table 7: Per-language and average perplexity results for the k = 4 and k = 16 X-ELM experiments (original XGLM
and k = 1 dense model included for comparison). Lower numbers are better. Each X-ELM setting is trained on
10.5B tokens. ∗TF-IDF ensemble uses more parameters for inference than other evaluations. †The HMR models are
initialized from an existing expert and trained for 10.5B more tokens.

Lang. TF-IDF Ens.
top-1 m=2 m=4 m=8

AR 14.00 14.12 14.05 14.05
BG 10.27 10.27 10.27 10.27
DE 12.95 13.09 13.07 13.04
EL 9.03 9.03 8.99 9.00
EN 12.68 12.50 12.48 12.47
ES 13.54 13.40 13.39 13.37
FR 10.79 10.92 10.88 10.88
HI 14.36 13.47 13.62 13.62
JA 11.36 11.35 11.37 11.37
KO 7.61 7.53 7.53 7.53
RU 11.83 11.90 11.90 11.90
SW 19.04 18.67 18.67 18.67
TR 13.41 13.58 13.58 13.58
UR 13.26 13.52 13.52 13.52
VI 10.56 10.41 10.41 10.42
ZH 12.61 12.84 12.84 12.87

Avg. 12.33 12.29 12.29 12.28

AZ – 736.49 724.97 722.10
HE – 749.12 719.68 719.05
PL – 177.31 175.27 174.83
SV – 95.33 94.37 94.14

Table 8: Perplexity scores of the different inference
methods on the TF-IDF X-ELMs trained with 21B to-
kens. Top-1 chooses a single expert per language, with
no routing mechanism, whereas m=2,4,8 ensembles TF-
IDF experts.

Figure 8: Heatmap of X-ELM forgetting with TF-IDF
(left) and Typ. (right) clustering, from the k = 4 (top)
and k = 16 (bottom) settings.



Model AR BG DE EL EN ES FR HI RU SW TH∗ TR UR VI ZH

Zero-shot
XGLM (1.7B) 46.8 45.7 44.1 42.5 51.5 36.5 47.2 45.9 47.3 43.6 44.9 42.5 43.5 43.9 46.9
Dense 47.9 45.0 45.3 45.2 51.1 37.2 45.9 44.5 44.5 39.6 44.3 44.8 43.1 41.6 44.6
Typ. (TRG) 46.2 44.9 43.9 45.4 52.0 36.0 47.2 43.5 41.9 40.6 – 44.2 41.9 44.4 46.3
TF-IDF (Top-1) 47.3 45.1 42.9 47.1 51.5 36.3 45.6 43.1 40.6 38.7 – 45.0 43.2 41.8 44.6
TF-IDF (Ens.) 48.6 47.2 46.2 43.1 53.0 37.0 47.5 45.7 45.6 40.0 45.8 44.1 44.2 42.6 46.6

Few-shot
XGLM (1.7B) 42.0 44.2 43.4 43.4 47.2 38.1 45.5 40.4 43.1 41.4 41.9 38.0 39.7 42.2 44.3
Dense 43.4 42.2 43.6 41.9 45.9 36.7 42.3 42.2 40.8 40.0 43.2 39.9 40.3 41.0 43.5
Typ. (TRG) 42.8 43.0 42.6 43.0 47.3 38.5 45.4 38.9 39.9 41.7 – 41.0 39.6 42.9 43.4
Typ. (EN) 42.2 42.6 44.0 42.6 47.3 38.5 42.9 42.1 42.8 40.9 44.5 41.1 40.0 42.1 44.9
TF-IDF (Top-1) 43.1 43.6 43.2 41.7 47.5 38.2 45.3 42.1 40.5 41.9 – 41.1 41.4 42.1 44.1
TF-IDF (Ens.) 43.0 43.3 44.3 43.3 47.8 37.7 44.2 43.2 42.3 41.4 44.4 41.8 41.0 42.7 44.9

Table 9: Individual language accuracy on XNLI. ∗TH (Thai) is an unseen language for the X-ELM models.

Model AR EN ES EU∗ HI ID∗ MY∗ RU SW TE∗ ZH

Zero-shot
XGLM (1.7B) 53.3 63.1 57.3 56.4 55.0 59.3 54.0 60.0 60.1 57.0 55.5
Dense 50.5 60.7 56.1 52.1 52.0 55.4 53.4 58.6 58.6 55.5 56.2
Typ. (TRG) 52.3 62.7 57.5 – 52.7 – – 60.2 60.3 – 58.8
TF-IDF (Top-1) 52.1 62.1 58.1 53.2 55.2 57.7 52.6 59.6 60.5 57.3 57.0
TF-IDF (Ens.) 51.9 60.4 57.8 54.0 55.4 58.5 52.0 59.5 60.2 57.1 57.0

Few-shot
XGLM (1.7B) 48.6 58.2 53.2 51.7 50.4 52.1 51.5 52.5 56.0 56.5 53.7
Dense 50.2 59.0 54.6 51.3 51.6 53.5 52.9 56.9 57.8 54.2 55.2
Typ. (TRG) 50.3 60.1 55.0 – 52.0 – – 57.4 58.0 – 56.0
Typ. (EN) 48.8 60.1 55.0 – 52.2 – – 53.7 57.4 – 55.2
TF-IDF (Top-1) 49.3 59.5 54.5 51.4 52.4 55.2 52.9 55.4 58.0 56.1 56.1
TF-IDF (Ens.) 49.4 59.0 53.8 51.1 52.5 54.5 52.0 55.1 57.8 55.0 55.4

Table 10: Individual language accuracy on XStoryCloze (and EN StoryCloze). ∗Unseen languages for the X-ELM
models.

Model DE EN ES FR JA KO ZH

Zero-shot
XGLM (1.7B) 44.5 47.9 51.8 45.2 53.8 49.6 47.0
Dense 49.4 47.5 50.7 47.5 48.8 47.2 48.0
Typ. (TRG) 47.9 47.9 53.0 45.5 55.4 53.6 45.7
TF-IDF (Top-1) 47.4 46.9 55.0 45.9 54.9 49.4 50.8
TF-IDF (Ens.) 49.1 47.1 52.1 47.2 53.6 50.0 50.4

Few-shot
XGLM (1.7B) 56.3 50.5 55.4 55.2 55.6 53.0 55.7
Dense 56.0 54.9 55.8 55.2 54.9 53.8 53.0
Typ. (TRG) 56.5 53.4 55.8 55.1 55.6 55.9 55.4
Typ. (EN) 56.0 53.4 55.8 55.4 55.5 54.7 55.1
TF-IDF (Top-1) 56.6 54.2 55.7 54.9 55.6 55.7 55.7
TF-IDF (Ens.) 53.8 54.9 54.8 53.6 55.3 55.2 54.4

Table 11: Individual language accuracy on PAWS-X.


