Prompting Language Models for Linguistic Structure

Terra Blevins Hila Gonen Luke Zettlemoyer University of Washington

Key Findings

- **Structured prompting** tests LMs for linguistic knowledge framed as sequence tagging tasks
- LMs have strong priors over label meaning, likely due to **pretraining** on labeled task data
- But LMs can also in-context learn without priors by using **unseen, informative** labels!

How does label choice affect structured prompting?

Acc.

	The	cat	is	a
Original Labels	DET	NOUN	AUX	DET
Shuffled Labels	PUNCT	ADV	PROPN	PUNCT
Proxy Labels	13	18	26	13
Words as Labels	determine	r noun	auxiliary	determiner

How does the pretraining data affect structured prompting?

Labeled data: 13 \t und \t und \t CCONJ \t KON \t \t 14 \t cc

usually follows *B-PER* and

I-PER, but it cannot follow

Task descriptions: *I-PER* label

PLMs rely on prior label knowledge for ICL, causing degraded performance in **Shuffled** setting

POS Label Distribution in the Pile

- Many occurrences in labeled UD format - % of contexts that are task data varies across labels

