Moving Down the Long Tail of Word Sense Disambiguation with Gloss Informed Bi-encoders

Terra Blevins and Luke Zettlemoyer

facebook Al Research

(n) (botany) a living organism...

(n) buildings for carrying on industrial labor (v) to put or set(a seed or plant)into the ground

(n) (botany) a living organism...

(n) buildings for carrying on industrial labor (v) to put or set(a seed or plant)into the ground

Target Word

(n) (botany) a living organism...

(n) buildings for carrying on industrial labor (v) to put or set(a seed or plant)into the ground

Candidate Senses

• Senses have Zipfian distribution in natural language

- Senses have Zipfian distribution in natural language
- Data imbalance leads to worse performance on uncommon senses

- Senses have Zipfian distribution in natural language
- Data imbalance leads to worse performance on uncommon senses

- Senses have Zipfian distribution in natural language
- Data imbalance leads to worse performance on uncommon senses
- We propose an approach to improve performance on rare senses with pretrained models and glosses

Incorporating Glosses into WSD Models

 Lexical overlap between context and gloss is a successful knowledge
 -based approach (Lesk, 1986)

Incorporating Glosses into WSD Models

- Lexical overlap between context and gloss is a successful knowledge
 -based approach (Lesk, 1986)
- Neural models integrate glosses by:
 - Adding glosses as additional inputs into the WSD model (Luo et al., 2018a,b)

Incorporating Glosses into WSD Models

- Lexical overlap between context and gloss is a successful knowledge
 -based approach (Lesk, 1986)
- Neural models integrate glosses by:
 - Adding glosses as additional inputs into the WSD model (Luo et al., 2018a,b)
 - Mapping encoded gloss representations onto graph embeddings to be used as labels for a WSD model (Kumar et al., 2019)

Pretrained Models for WSD

• Simple **probing** classifiers on frozen pretrained representations found to perform better than models without pretraining

Hadiwinoto et al. (2019), Improved word sense disambiguation using pretrained contextualized representations. Huang et al. (2019), GlossBERT: Bert for word sense disambiguation with gloss knowledge.

Pretrained Models for WSD

- Simple **probing** classifiers on frozen pretrained representations found to perform better than models without pretraining
- **GlossBERT** finetunes BERT on WSD with glosses by setting it up as a sentence-pair classification task

Hadiwinoto et al. (2019), Improved word sense disambiguation using pretrained contextualized representations. Huang et al. (2019), GlossBERT: Bert for word sense disambiguation with gloss knowledge.

• Two encoders that independently encode the **context** and **gloss**, aligning the target word embedding to the correct sense embedding

- Two encoders that independently encode the **context** and **gloss**, aligning the target word embedding to the correct sense embedding
- Encoders initialized with BERT and trained end-to-end, without external knowledge

- Two encoders that independently encode the **context** and **gloss**, aligning the target word embedding to the correct sense embedding
- Encoders initialized with BERT and trained end-to-end, without external knowledge
- The bi-encoder is more computationally efficient than a cross-encoder

Model	Glosses?	Pretraining?	Source
HCAN	1		Luo et al., 2018a
EWISE	1		Kumar et al., 2019
BERT Probe		1	Ours
GLU		1	Hadiwinoto et al., 2019
LMMS	1	1	Loureiro and Jorge, 2019
SVC		1	Vial et al., 2019
GlossBERT		1	Huang et al., 2019
Bi-encoder Model (BEM)		1	Ours

Model	Glosses?	Pretraining?	Source
HCAN	1		Luo et al., 2018a
EWISE	√		Kumar et al., 2019
BERT Probe		1	Ours
GLU		1	Hadiwinoto et al., 2019
LMMS	1	1	Loureiro and Jorge, 2019
SVC		1	Vial et al., 2019
GlossBERT	1	1	Huang et al., 2019
Bi-encoder Model (BEM)		1	Ours

Model	Glosses?	Pretraining?	Source
HCAN	1		Luo et al., 2018a
EWISE	1		Kumar et al., 2019
BERT Probe		1	Ours
GLU		1	Hadiwinoto et al., 2019
LMMS	1	1	Loureiro and Jorge, 2019
SVC		1	Vial et al., 2019
GlossBERT		 ✓ 	Huang et al., 2019
Bi-encoder Model (BEM)	1	1	Ours

Model	Glosses?	Pretraining?	Source
HCAN	1		Luo et al., 2018a
EWISE	1		Kumar et al., 2019
BERT Probe		1	Ours
GLU		1	Hadiwinoto et al., 2019
LMMS	1	1	Loureiro and Jorge, 2019
SVC		1	Vial et al., 2019
GlossBERT	1	1	Huang et al., 2019
Bi-encoder Model (BEM)	1	1	Ours

MFS Performance

MFS Performance

LFS Performance

MFS Performance

LFS Performance

Zero-shot Evaluation

- BEM can represent new, unseen senses with gloss encoder and encode unseen words with the context encoder
- Probe baseline relies on **WordNet back-off**, predicting the most common sense of unseen words as indicated in WordNet

Zero-shot Evaluation

Zero-shot Words

Zero-shot Evaluation

Zero-shot Words

Zero-shot Senses

Few-shot Learning of WSD

Train BEM (and frozen probe baseline) on subset of SemCor, with (up to) **k** examples of each sense in the training data

Few-shot Learning of WSD

Train BEM (and frozen probe baseline) on subset of SemCor, with (up to) **k** examples of each sense in the training data

Few-shot Learning of WSD

Train BEM (and frozen probe baseline) on subset of SemCor, with (up to) **k** examples of each sense in the training data

Takeaways

• The **BEM** improves over the BERT probe baseline and prior approaches to using (1) sense definitions and (2) pretrained models for WSD

Takeaways

- The **BEM** improves over the BERT probe baseline and prior approaches for using (1) sense definitions and (2) pretrained models for WSD
- Gains stem from better performance on less common and unseen senses

Takeaways

Questions?

- The **BEM** improves over the BERT probe baseline and prior approaches to using (1) sense definitions and (2) pretrained models for WSD
- Gains stem from better performance on less common and unseen senses

https://github.com/facebookresearch/wsd-biencoders

blvns@cs.washington.edu