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Data Sparsity in WSD
● Senses have Zipfian distribution in 

natural language
● Data imbalance leads to worse 

performance on uncommon senses 
● We propose an approach to improve 

performance on rare senses with 
pretrained models and glosses 

Kilgarriff (2004), How dominant is the commonest sense of a word?.
Kumar et al. (2019), Zero-shot Word Sense Disambiguation using Sense Definition Embeddings.
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Incorporating Glosses into WSD Models

● Lexical overlap between context and 
gloss is a successful knowledge 
-based approach (Lesk, 1986)

● Neural models integrate glosses by:
○ Adding glosses as additional inputs 

into the WSD model (Luo et al., 2018a,b)

○ Mapping encoded gloss 
representations onto graph 
embeddings to be used as labels for a 
WSD model (Kumar et al., 2019)
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Pretrained Models for WSD

● Simple probing classifiers on frozen pretrained representations found to 
perform better than models without pretraining

● GlossBERT finetunes BERT on WSD with glosses by setting it up as a 
sentence-pair classification task

 Hadiwinoto et al. (2019), Improved word sense disambiguation using pretrained contextualized representations. 
Huang et al. (2019), GlossBERT: Bert for word sense disambiguation with gloss knowledge.
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Our Approach: Gloss Informed Bi-encoder

● Two encoders that independently encode the context and gloss, aligning 
the target word embedding to the correct sense embedding

● Encoders initialized with BERT and trained end-to-end, without external 
knowledge

● The bi-encoder is more computationally efficient than a cross-encoder
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Baselines and Prior Work
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SVC ✓ Vial et al., 2019

GlossBERT ✓ ✓ Huang et al., 2019

Bi-encoder Model (BEM) ✓ ✓ Ours
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MFS Performance LFS Performance

94.9 93.5 94.1

37.0
31.2

52.6

BEM gains come 
almost entirely 
from LFS



Zero-shot Evaluation

84.9
91.2

● BEM can represent new, unseen senses with gloss encoder and encode 
unseen words with the context encoder

● Probe baseline relies on WordNet back-off, predicting the most common 
sense of unseen words as indicated in WordNet
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Zero-shot Words Zero-shot Senses

84.9
91.0 91.2

53.6

68.9
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Few-shot Learning of WSD

Train BEM (and frozen probe baseline) on subset of SemCor, with (up to) k 
examples of each sense in the training data

BEM at k=5 gets 
similar performance 
to full baseline
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● The BEM improves over the BERT probe baseline and prior approaches to 
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● Gains stem from better performance on less common and unseen senses

Questions?
https://github.com/facebookresearch/wsd-biencoders

blvns@cs.washington.edu


