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Few-shot Examples of Word Sense (FEWS)

e To address the data sparsity issue for rare senses, we create FEWS, a new

WSD dataset

e Datain FEWS come from Wiktionary example sentences

e Using a dictionary as a data source means that FEWS is:
o High coverage (particularly on rare senses)
o Low-shot (only a few labeled examples per sense)
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Few-shot Examples of Word Sense (FEWS)

e FEWS consists of a glossary of word senses and their definitions, a

training set (121k examples) and development and test evaluation sets

(10k examples each).
e The evaluation sets are each split up into few-shot and zero-shot

evaluation settings
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e FEWS is a high coverage dataset.
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Dataset Analysis of FEWS

e FEWS is a high coverage.. e
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Dataset Analysis of FEWS
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Knowledge-based: (usually) untrained baselines that predict word sense
based on features of the dataset (i.e., global statistics, glosses)
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Baselines for FEWS

Neural: machine learning baselines that build on pretrained encoders with

transformer architectures (BERT)

Baseline Knowledge-based? Neural? Source

Most Frequent Sense (MFS) v/ Kilgarriff, 2004

Lesk 4 Kilgarriff and Rosenzweig, 2000
Lesk+Embed v/ Basile et al., 2014

BERT Probe 4 Blevins and Zettlemoyer, 2020
Bi-encoder Model (BEM) v/ v/ Blevins and Zettlemoyer, 2020
(Est.) Human Performance Ours




Few-Shot Results on FEWS
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Transfer Learning With FEWS

e Experiments to evaluate whether FEWS improves performance on
uncommon senses in other WSD datasets
e Staged Fine-tuning: train model on two datasets

o Ist:the intermediate training set
o 2nd:the target training set

e Evaluate models on target evaluation set
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Transfer Learning With FEWS

e FEWS ->intermediate dataset
e WSD Framework (Raganato et al., 2017) -> target dataset

e Consider performance of biencoder model (BEM; Blevins and Zettlemoyer
2020) trained on
o Only the target dataset (BEM___.)
o Only the intermediate dataset (BEM__ . )
o Both the intermediate and target datasets (BEM__, )



Transfer Learning With FEWS
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WSD Framework Evaluation by Sense Frequency

Zero-shot
Words Senses
WordNet S1 100.0 0.0 84.9 53.9
BEMgErr 94.1 526 | 91.2 68.9
BEMrrws 93.7 3529 | 922 74.8
BEM, .ro—shot | 72.6 555 | 92.7 80.5

MFS LFS




WSD Framework Evaluation by Sense Frequency

Zero-shot
Words | Senses
WordNet S1 100.0 0.0 84.9 53.9
BEMgErr 94.1 526 | 91.2 68.9
BEMrrws 93.7 3529 | 922 74.8
BEM, .ro—shot | 72.6 555 | 92.7 \ 80.5

MFS LFS

<




Takeaways

e FEWS is a WSD dataset that provides low-shot training data and evaluation
of rare senses.



Takeaways

e FEWS is a WSD dataset that provides low-shot training data and evaluation

of rare senses.
e All considered baselines lag behind human performance on FEWS, leaving

room for future improvement



Takeaways

FEWS is a WSD dataset that provides low-shot training data and evaluation
of rare senses.

All considered baselines lag behind human performance on FEWS, leaving
room for future improvement

Transfer learning experiments demonstrate that FEWS improves
performance on uncommon senses in other WSD evaluations.



Takeaways

e FEWS is a WSD dataset that provides low-shot training data and evaluation
of rare senses.

e All considered baselines lag behind human performance on FEWS, leaving
room for future improvement

e Transfer learning experiments demonstrate that FEWS improves
performance on uncommon senses in other WSD evaluations.

https://www.nlp.cs.washington.edu/fews/

Questions?

blvhs@cs.washington.edu



