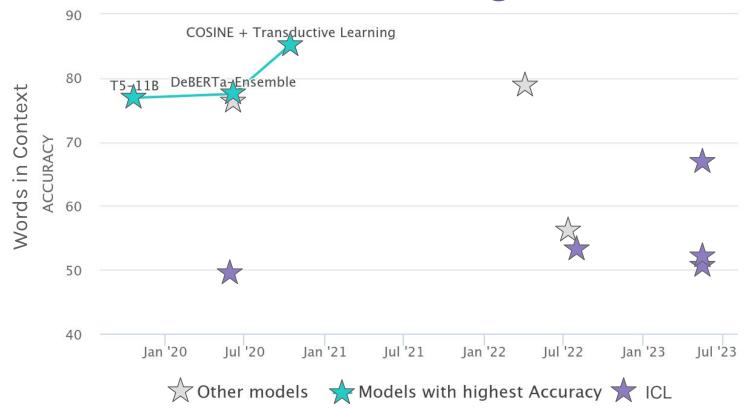
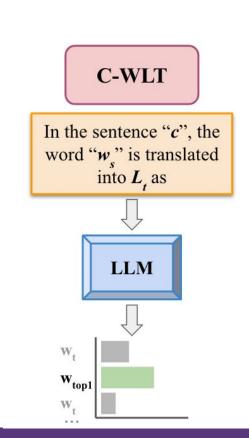

Translate to Disambiguate: Zero-shot Multilingual Word Sense Disambiguation with Pretrained Language Models


Haoqiang Kang*, Terra Blevins*, and Luke Zettlemoyer

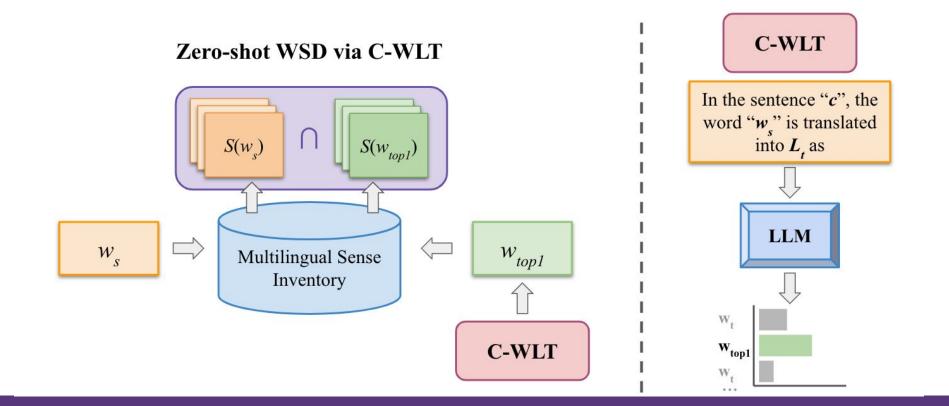
Pretrained Language Models are the backbone of SOTA word sense disambiguation models

Pretrained Language Models <u>don't</u> recover word sense with in-context learning

An outfitter provided everything needed for the safari.


Before his first walking holiday, he went to a specialist outfitter to buy some boots. question: Is the word 'outfitter' used in the same way in the two sentences above? answer:

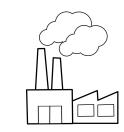
GPT-3 WiC Prompt


An outfitter provided everything needed for the safari. Before his first walking holiday, he went to a specialist outfitter to buy some boots. question: Is the word 'outfitter' used in the same way in the two sentences above? answer:

GPT-3 WiC Prompt

Contextual Word-Level Translation (C-WLT) a more natural method to prompt LMs for word sense knowledge

Extend Contextual Word-Level Translation (C-WLT) into zero-shot approach for multilingual WSD



Word-level Translation (WLT)

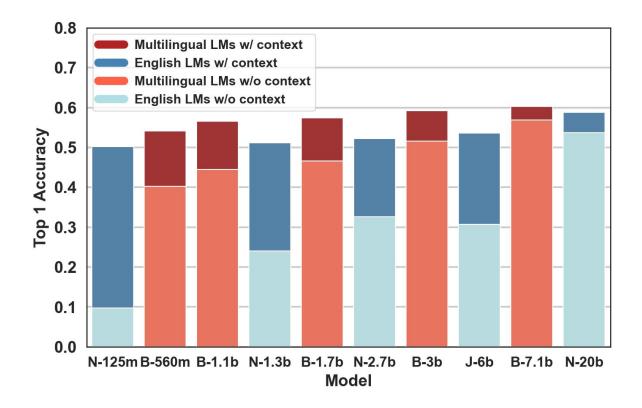
Source WordTarget LanguageWLT: The word "plant" is translated into Chinese as ___.

b)

Contextual Word-level Translation (WLT)

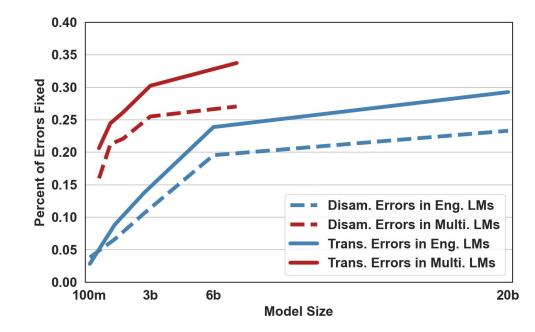
Source WordTarget LanguageWLT: The word "plant" is translated into Chinese as ___.

Context

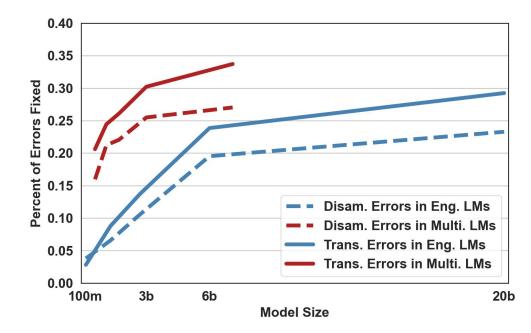

Contextual WLT: In the sentence "The plant sprouted a new leaf", the word "plant" is translated into Chinese as ___.

Source Word

Target Language



Results: Adding Context Improves WLT Accuracy

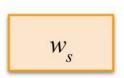

Results

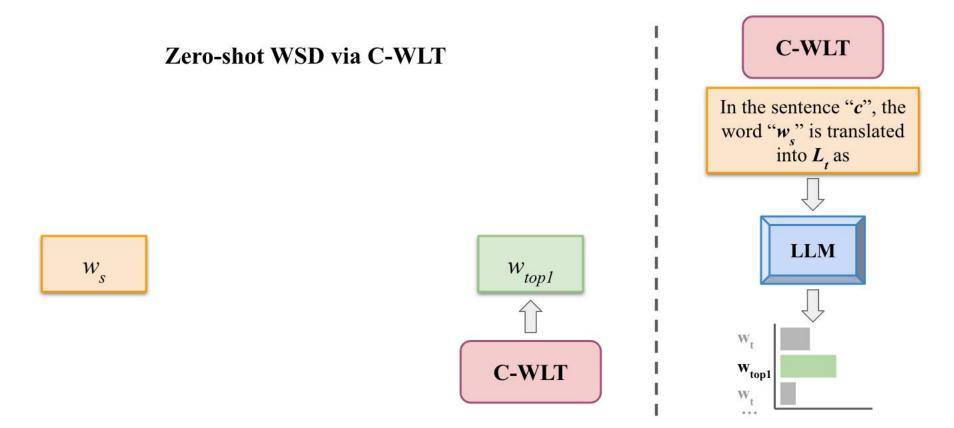
- Larger models benefit more than smaller ones from using contextual information.

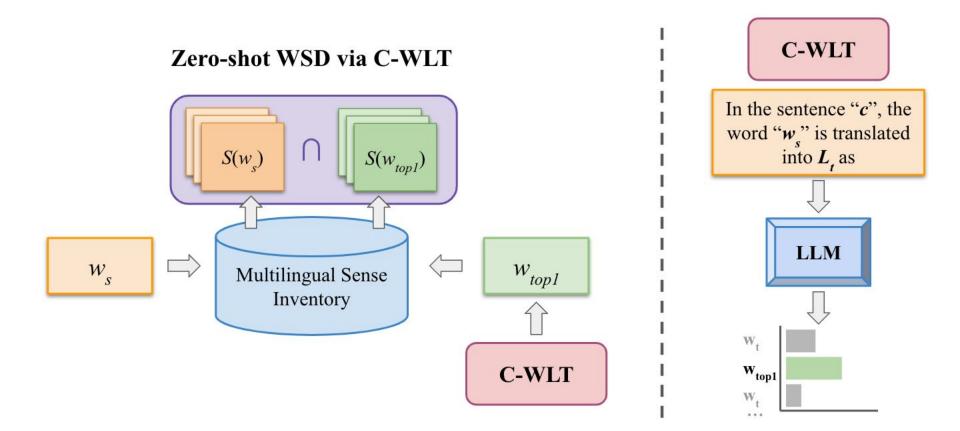
Results

- Larger models benefit more than smaller ones from using contextual information.
- Context helps correct **translation errors** as well as disambiguate the sense

What does this tell us?


Contextual word-level translation (C-WLT) can differentiate different meanings of a word in the source language


What does this tell us?


Contextual word-level translation (C-WLT) can differentiate different meanings of a word in the source language

Can we use C-WLT to perform Word Sense Disambiguation?

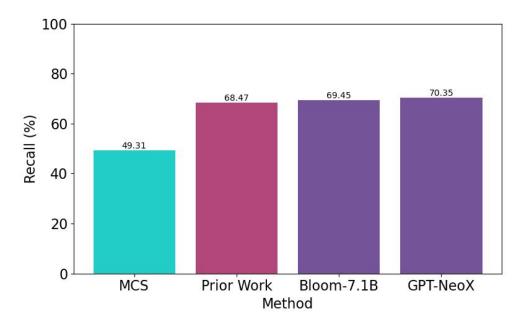
Zero-shot WSD via C-WLT

WSD Experimental Setup

- Evaluation on XL-WSD dataset (18 source languages)
- 5 target languages (English, Chinese, Russian, Spanish, and Finnish)

WSD Experimental Setup

- Evaluation on XL-WSD dataset (18 source languages)
- 5 target languages (English, Chinese, Russian, Spanish, and Finnish)


Target Language Ensembling

Given a source word w_{s} and a set of target languages T:

- 1. $S(T) = {S(w_{top1}^{t}): t \in T}$
- 2. $S(T)' = \{max(s) \in S(T)\}$
- 3. Predicted sense set = $S(T)' \cap S(w_s)$

WSD Results

WSD via C-WLT achieves higher recall than the prior supervised works in 11 out of the 18 source languages.

Why Recall?

Recall

How often the predicted label set contains **at least one** of the gold annotations for a given example.

Jaccard Index

Percentage of overlap between the true and predicted label sets.

$$\frac{1}{N}\sum_{i=1}^{N}\mathbb{1}(L_{i}^{pred}\cap L_{i}^{gold}\neq \emptyset)$$

$$\frac{1}{N}\sum_{i=1}^{N}\frac{|L_{i}^{pred}\cap L_{i}^{gold}|}{|L_{i}^{pred}\cup L_{i}^{gold}|}$$

WSD Results

- There is a **tradeoff** between the Jaccard index and recall...

Target Lang.	Recall	Jaccard	Delta*
Spanish	74.23	52.94	20.0
English	67.16	53.37	11.7
Finnish	66.35	54.28	12.9 10.2
Russian	67.42	55.08	
Chinese	70.84	57.77	9.6
Best Setting	70.35	58.59	8.7
All 5 Joint [†]	66.60	57.50	6.7

WSD Results

- There is a **tradeoff** between the Jaccard index and recall...
- Mitigated by using **dissimilar** target languages to the source and ensembling diverse languages.

Target Lang.	Recall	Jaccard	Delta*	
Spanish	74.23	52.94	20.0	
English	67.16	53.37	11.7	
Finnish	66.35	54.28	12.9 10.2	
Russian	67.42	55.08		
Chinese	70.84	57.77	9.6	
Best Setting	70.35	58.59	8.7	
All 5 Joint [†]	66.60	57.50	6.7	

Effect of Fine-grained Senses

- WSD via C-WLT predicts <u>sets</u> of senses...
- ...but most words in XL-WSD are annotated with one sense
- Missing senses are a major source of annotation error in WSD datasets (Maru et al., ACL 2022)

Effect of Fine-grained Senses

Sentence: 广播还没说完, 各班的同学早已冲 出教室 (Before the broadcast was finished, students from all classes had already rushed out of the classroom.)

XL-WSD Sense: "Be broadcast". Missing Sense: "Broadcast over the airwaves, as in radio or television."

Effect of Fine-grained Senses

Label Set	Recall		Jaccard	
	NeoX	B-7.1B	NeoX	B-7.1B
Orig.	63.78	57.74	52.01	50.98
Annot.	74.01	74.54	54.29	52.73

Sentence: 广播还没说完, 各班的同学早已冲 出教室 (Before the broadcast was finished, students from all classes had already rushed out of the classroom.)

XL-WSD Sense: "Be broadcast". **Missing Sense:** "Broadcast over the airwaves, as in radio or television."

Manual reannotation of Chinese WSD data verifies that many words (~44%) have missing, related senses

Takeaways

- **C-WLT** recovers word sense from LMs through prompting
- WSD via C-WLT uses translation to perform zero-shot WSD with LMs

Takeaways

- **C-WLT** recovers word sense from LMs through prompting
- WSD via C-WLT uses translation to perform zero-shot WSD with LMs
- These methods demonstrate LM's knowledge of underlying word senses and present new approaches for WSD in low-resource settings

Takeaways

Check out the paper!

- **C-WLT** recovers word sense from LMs through prompting
- WSD via C-WLT uses translation to perform zero-shot WSD with LMs
- These methods demonstrate LM's knowledge of underlying word senses and present new approaches for WSD in low-resource settings

Questions?

http://mk322.github.io

haoqik88@gmail.com

http://blvns.github.io

blvns@cs.washington.edu